Rational design of MXene-based vacancy-confined single-atom catalyst for efficient oxygen evolution reaction

被引:3
|
作者
Fu, Zhongheng [1 ]
Hai, Guangtong [2 ]
Ma, Xia-Xia [3 ]
Legut, Dominik [4 ,5 ]
Zheng, Yongchao [6 ]
Chen, Xiang [3 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Zhejiang Univ, Inst Zhejiang Univ Quzhou, Quzhou 324000, Zhejiang, Peoples R China
[3] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[4] Tech Univ Ostrava, VSB, IT4Innovat, 17 listopadu 2172-15, Ostrava 70800, Czech Republic
[5] Charles Univ Prague, Fac Math & Phys, Dept Condensed Matter Phys, Ke Karlovu 5, Prague 2, Czech Republic
[6] Inst Chem Def, State Key Lab NBC Protect Civilian, Beijing 102205, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
MXene; Single-atom catalysis; Oxygen evolution reaction; High-throughput calculation; Machine learning; METAL; STABILITY;
D O I
10.1016/j.jechem.2024.07.014
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Two-dimensional transition metal carbides (MXenes) have been demonstrated to be promising supports for single-atom catalysts (SACs) to enable efficient oxygen evolution reaction (OER). However, the rational design of MXene-based SACs depends on an experimental trial-and-error approach. A theoretical guidance principle is highly expected for the efficient evaluation of MXene-based SACs. Herein, highthroughput screening was performed through first-principles calculations and machine learning techniques. Ti3C2(OH)x, V3C2(OH)x, Zr3C2(OH)x, Nb3C2(OH)x, Hf3C2(OH)x, Ta3C2(OH)x, and W3C2(OH)x were screened out based on their excellent stability. Zn, Pd, Ag, Cd, Au, and Hg were proposed to be promising single atoms anchored in MXenes based on cohesive energy analysis. Hf3C2(OH)x with a Pd single atom delivers a theoretical overpotential of 81 mV. Both moderate electron-deficient state and high covalency of metal-carbon bonds were critical features for the high OER reactivity. This principle is expected to be a promising approach to the rational design of OER catalysts for metal-air batteries, fuel cells, and other OER-based energy storage devices. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:663 / 669
页数:7
相关论文
共 50 条
  • [31] Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction
    Wan, Chengzhang
    Duan, Xiangfeng
    Huang, Yu
    ADVANCED ENERGY MATERIALS, 2020, 10 (14)
  • [32] Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction
    Wan, Chengzhang
    Duan, Xiangfeng
    Huang, Yu
    Advanced Energy Materials, 2020, 10 (14):
  • [33] MXene-Based Single-Atom Catalysts for Electrochemical Reduction of CO2 to Hydrocarbon Fuels
    Athawale, A.
    Abraham, B. Moses
    Jyothirmai, M. V.
    Singh, Jayant K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (51): : 24542 - 24551
  • [34] In-Situ Generated High-Valent Iron Single-Atom Catalyst for Efficient Oxygen Evolution
    Zhang, Zhirong
    Feng, Chen
    Li, Xiangyang
    Liu, Chunxiao
    Wang, Dongdi
    Si, Rui
    Yang, Jinlong
    Zhou, Shiming
    Zeng, Jie
    NANO LETTERS, 2021, 21 (11) : 4795 - 4801
  • [35] Single-atom ruthenium based catalyst for enhanced hydrogen evolution
    Wang, Dewen
    Li, Qun
    Han, Ce
    Xing, Zhicai
    Yang, Xiurong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 249 : 91 - 97
  • [36] Iridium single-atom catalyst coupled with lattice oxygen activated CoNiO2 for accelerating the oxygen evolution reaction
    Yang, Meng-Qi
    Zhou, Kai-Ling
    Wang, Chao
    Zhang, Man-Chen
    Wang, Chang-Hao
    Ke, Xiaoxing
    Chen, Ge
    Wang, Hao
    Wang, Ru-Zhi
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (48) : 25692 - 25700
  • [37] Trends and Prospects of Bulk and Single-Atom Catalysts for the Oxygen Evolution Reaction
    Iqbal, Sarmad
    Safdar, Bushra
    Hussain, Iftikhar
    Zhang, Kaili
    Chatzichristodoulou, Christodoulos
    ADVANCED ENERGY MATERIALS, 2023, 13 (17)
  • [38] A Fe-Ni-Zn triple single-atom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries
    Tsai, Jui-En
    Hong, Wei-Xiang
    Pourzolfaghar, Hamed
    Wang, Wei-Hsuan
    Li, Yuan-Yao
    CHEMICAL ENGINEERING JOURNAL, 2023, 460
  • [39] Coordination Engineering of Single-Atom Iron Catalysts for Oxygen Evolution Reaction
    Yang, Weijie
    Zhou, Binghui
    Jia, Zhenhe
    Wu, Chongchong
    Wei, Li
    Gao, Zhengyang
    Li, Hao
    CHEMCATCHEM, 2022,
  • [40] A Fe-Ni-Zn Triple Single-Atom Catalyst for Efficient Oxygen Reduction and Oxygen Evolution Reaction in Rechargeable Zn-Air Batteries
    Tsai, Jui-En
    Hong, Wei-Xiang
    Pourzolfaghar, Hamed
    Wang, Wei-Hsuan
    Li, Yuan-Yao
    SSRN, 2022,