Machine learning-based prediction of coronary care unit readmission: A multihospital validation study

被引:0
|
作者
Yau, Fei-Fei Flora [1 ]
Chiu, I-Min [1 ,2 ]
Wu, Kuan-Han [1 ]
Cheng, Chi-Yung [1 ]
Lee, Wei-Chieh [3 ]
Chen, Huang-Chung [4 ]
Cheng, Cheng-, I [4 ]
Chen, Tien-Yu [4 ]
机构
[1] Kaohsiung Chang Gung Mem Hosp, Dept Emergency Med, Kaohsiung, Taiwan
[2] Cedars Sinai Med Ctr, Smidt Heart Inst, Dept Cardiol, Los Angeles, CA USA
[3] Chi Mei Med Ctr, Dept Internal Med, Div Cardiol, Tainan, Taiwan
[4] Kaohsiung Chang Gung Mem Hosp, Dept Internal Med, Div Cardiol, 123 Dapi Rd, Kaohsiung 83301, Taiwan
来源
DIGITAL HEALTH | 2024年 / 10卷
关键词
Multihospital validation; machine learning; coronary care unit; readmission; gradient boosting; HOSPITAL READMISSION; HEALTH; MODEL;
D O I
10.1177/20552076241277030
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective Readmission to the coronary care unit (CCU) has significant implications for patient outcomes and healthcare expenditure, emphasizing the urgency to accurately identify patients at high readmission risk. This study aims to construct and externally validate a predictive model for CCU readmission using machine learning (ML) algorithms across multiple hospitals.Methods Patient information, including demographics, medical history, and laboratory test results were collected from electronic health record system and contributed to a total of 40 features. Five ML models: logistic regression, random forest, support vector machine, gradient boosting, and multilayer perceptron were employed to estimate the readmission risk.Results The gradient boosting model was selected demonstrated superior performance with an area under the receiver operating characteristic curve (AUC) of 0.887 in the internal validation set. Further external validation in hold-out test set and three other medical centers upheld the model's robustness with consistent high AUCs, ranging from 0.852 to 0.879.Conclusion The results endorse the integration of ML algorithms in healthcare to enhance patient risk stratification, potentially optimizing clinical interventions, and diminishing the burden of CCU readmissions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Development and validation of machine learning-based models for prediction of adolescent idiopathic scoliosis: A retrospective study
    Lv, Zheng
    Lv, Wen
    Wang, Lei
    Ou, Jiayuan
    MEDICINE, 2023, 102 (14) : E33441
  • [22] Development and validation of a machine learning-based postpartum depression prediction model: A nationwide cohort study
    Hochman, Eldar
    Feldman, Becca
    Weizman, Abraham
    Krivoy, Amir
    Gur, Shay
    Barzilay, Eran
    Gabay, Hagit
    Levy, Joseph
    Levinkron, Ohad
    Lawrence, Gabriella
    DEPRESSION AND ANXIETY, 2021, 38 (04) : 400 - 411
  • [23] Development and Prospective Validation of a Machine Learning-Based Risk of Readmission Model in a Large Military Hospital
    Eckert, Carly
    Nieves-Robbins, Neris
    Spieker, Elena
    Louwers, Tom
    Hazel, David
    Marquardt, James
    Solveson, Keith
    Zahidl, Anam
    Ahmadl, Muhammad
    Barnhill, Richard
    McKelvey, T. Greg
    Marsha, Robert
    Shry, Eric
    Teredesai, Ankur
    APPLIED CLINICAL INFORMATICS, 2019, 10 (02): : 316 - 325
  • [24] Machine learning applied to a Cardiac Surgery Recovery Unit and to a Coronary Care Unit for mortality prediction
    Nistal-Nuno, Beatriz
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2022, 36 (03) : 751 - 763
  • [25] Machine learning applied to a Cardiac Surgery Recovery Unit and to a Coronary Care Unit for mortality prediction
    Beatriz Nistal-Nuño
    Journal of Clinical Monitoring and Computing, 2022, 36 : 751 - 763
  • [26] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [27] Machine learning-based prediction of length of stay (LoS) in the neonatal intensive care unit using ensemble methods
    Erdogan Yildirim A.
    Canayaz M.
    Neural Computing and Applications, 2024, 36 (23) : 14433 - 14448
  • [28] Machine Learning-based Prediction of Prolonged Intensive Care Unit Stay for Critical Patients with Spinal Cord Injury
    Fan, Guoxin
    Yang, Sheng
    Liu, Huaqing
    Xu, Ningze
    Chen, Yuyong
    He, Jie
    Su, Xiuyun
    Pang, Mao
    Liu, Bin
    Han, Lanqing
    Rong, Limin
    SPINE, 2022, 47 (09) : E390 - E398
  • [29] Development and Validation of a Machine Learning-Based Prediction Model for Detection of Biliary Atresia
    Choi, Ho Jung
    Kim, Yeong Eun
    Namgoong, Jung-Man
    Kim, Inki
    Park, Jun Sung
    Baek, Woo Im
    Lee, Byong Sop
    Yoon, Hee Mang
    Cho, Young Ah
    Lee, Jin Seong
    Shim, Jung Ok
    Oh, Seak Hee
    Moon, Jin Soo
    Ko, Jae Sung
    Kim, Dae Yeon
    Kim, Kyung Mo
    GASTRO HEP ADVANCES, 2023, 2 (06): : 778 - 787
  • [30] A machine learning-based diabetes risk prediction modeling study
    Ming, Jiexiu
    Xu, Junyi
    Zhang, Miaomiao
    Li, Ningyu
    Yan, Xu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 363 - 369