MSFN: a multi-omics stacked fusion network for breast cancer survival prediction

被引:0
|
作者
Zhang, Ge [1 ,2 ,3 ]
Ma, Chenwei [2 ]
Yan, Chaokun [1 ,2 ,3 ]
Luo, Huimin [1 ,2 ,3 ]
Wang, Jianlin [1 ,2 ,3 ]
Liang, Wenjuan [1 ,2 ,3 ]
Luo, Junwei [4 ]
机构
[1] Henan Univ, Acad Adv Interdisciplinary Studies, Kaifeng, Henan, Peoples R China
[2] Henan Univ, Sch Comp & Informat Engn, Kaifeng, Henan, Peoples R China
[3] Henan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng, Henan, Peoples R China
[4] Henan Polytech Univ, Coll Comp Sci & Technol, Jiaozuo, Henan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
deep learning; breast cancer survival prediction; multi-omics data; residual graph neural network; convolutional neural network; stacking integration; NEURAL-NETWORK; PROGNOSIS;
D O I
10.3389/fgene.2024.1378809
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Developing effective breast cancer survival prediction models is critical to breast cancer prognosis. With the widespread use of next-generation sequencing technologies, numerous studies have focused on survival prediction. However, previous methods predominantly relied on single-omics data, and survival prediction using multi-omics data remains a significant challenge.Methods: In this study, considering the similarity of patients and the relevance of multi-omics data, we propose a novel multi-omics stacked fusion network (MSFN) based on a stacking strategy to predict the survival of breast cancer patients. MSFN first constructs a patient similarity network (PSN) and employs a residual graph neural network (ResGCN) to obtain correlative prognostic information from PSN. Simultaneously, it employs convolutional neural networks (CNNs) to obtain specificity prognostic information from multi-omics data. Finally, MSFN stacks the prognostic information from these networks and feeds into AdaboostRF for survival prediction.Results: Experiments results demonstrated that our method outperformed several state-of-the-art methods, and biologically validated by Kaplan-Meier and t-SNE.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Classifying breast cancer using multi-view graph neural network based on multi-omics data
    Ren, Yanjiao
    Gao, Yimeng
    Du, Wei
    Qiao, Weibo
    Li, Wei
    Yang, Qianqian
    Liang, Yanchun
    Li, Gaoyang
    FRONTIERS IN GENETICS, 2024, 15
  • [42] A multi-view multi-omics model for cancer drug response prediction
    Zhijin Wang
    Ziyang Wang
    Yaohui Huang
    Longquan Lu
    Yonggang Fu
    Applied Intelligence, 2022, 52 : 14639 - 14650
  • [43] Enhancing Non-Small Cell Lung Cancer Survival Prediction through Multi-Omics Integration Using Graph Attention Network
    Elbashir, Murtada K.
    Almotilag, Abdullah
    Mahmood, Mahmood A.
    Mohammed, Mohanad
    DIAGNOSTICS, 2024, 14 (19)
  • [44] A multi-view multi-omics model for cancer drug response prediction
    Wang, Zhijin
    Wang, Ziyang
    Huang, Yaohui
    Lu, Longquan
    Fu, Yonggang
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14639 - 14650
  • [45] Integrated Multi-Omics Signature Predicts Survival in Head and Neck Cancer
    Ribeiro, Ilda Patricia
    Esteves, Luisa
    Caramelo, Francisco
    Carreira, Isabel Marques
    Melo, Joana Barbosa
    CELLS, 2022, 11 (16)
  • [46] Multi-Omics Marker Analysis Enables Early Prediction of Breast Tumor Progression
    Xu, Haifeng
    Lien, Tonje
    Bergholtz, Helga
    Fleischer, Thomas
    Djerroudi, Lounes
    Vincent-Salomon, Anne
    Sorlie, Therese
    Aittokallio, Tero
    FRONTIERS IN GENETICS, 2021, 12
  • [47] Prognostic Biomarkers in Breast Cancer via Multi-Omics Clustering Analysis
    Malighetti, Federica
    Villa, Matteo
    Villa, Alberto Maria
    Pelucchi, Sara
    Aroldi, Andrea
    Cortinovis, Diego Luigi
    Canova, Stefania
    Capici, Serena
    Cazzaniga, Marina Elena
    Mologni, Luca
    Ramazzotti, Daniele
    Cordani, Nicoletta
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)
  • [48] Moanna: Multi-Omics Autoencoder-Based Neural Network Algorithm for Predicting Breast Cancer Subtypes
    Lupat, Richard
    Perera, Rashindrie
    Loi, Sherene
    Li, Jason
    IEEE ACCESS, 2023, 11 : 10912 - 10924
  • [49] Capsule Network Based Modeling of Multi-omics Data for Discovery of Breast Cancer-Related Genes
    Peng, Chen
    Zheng, Yang
    Huang, De-shuang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (05) : 1605 - 1612
  • [50] Triple Negative Breast Cancer: A Multi-Omics Network Discovery Strategy for Candidate Targets and Driving Pathways
    Karagoz, Kubra
    Sinha, Raghu
    Arga, Kazim Yalcin
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2015, 19 (02) : 115 - 130