Grain Boundary Defect Engineering in Rutile Iridium Oxide Boosts Efficient and Stable Acidic Water Oxidation

被引:0
|
作者
Zhang, Ning [1 ,2 ]
Fan, Yingqi [1 ,2 ]
Wang, Depeng [1 ,2 ]
Yang, Hong [1 ,2 ]
Yu, Yang [1 ]
Liu, Jianwei [1 ,2 ]
Zeng, Jianrong [3 ,4 ]
Bao, Di [1 ]
Zhong, Haixia [1 ,2 ]
Zhang, Xinbo [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
water electrolysis; acidic oxygen evolution reaction; electrocatalysts; joule heating; rutile-type IrO2; grain boundary;
D O I
10.1002/chem.202400651
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr-1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm(-2) with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm(-2) with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm(-2).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis
    Yao, Yancai
    Hu, Sulei
    Chen, Wenxing
    Huang, Zheng-Qing
    Wei, Weichen
    Yao, Tao
    Liu, Ruirui
    Zang, Ketao
    Wang, Xiaoqian
    Wu, Geng
    Yuan, Wenjuan
    Yuan, Tongwei
    Zhu, Baiquan
    Liu, Wei
    Li, Zhijun
    He, Dongsheng
    Xue, Zhenggang
    Wang, Yu
    Zheng, Xusheng
    Dong, Juncai
    Chang, Chun-Ran
    Chen, Yanxia
    Hong, Xun
    Luo, Jun
    Wei, Shiqiang
    Li, Wei-Xue
    Strasser, Peter
    Wu, Yuen
    Li, Yadong
    NATURE CATALYSIS, 2019, 2 (04) : 304 - 313
  • [32] Construction of Pd-doped RuO 2 nanosheets for efficient and stable acidic water oxidation
    Liu, Yibo
    Hu, Xing
    Liu, Chenxi
    Zhu, Shan
    Jiang, Kezhu
    Liu, Feng
    Zheng, Shijian
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (06) : 937 - 948
  • [33] In Situ Activation Endows Orthorhombic Fluorite-Type Samarium Iridium Oxide with Enhanced Acidic Water Oxidation
    Wang, Yu
    Li, Zijian
    Hou, Liqiang
    Wang, Yimeng
    Zhang, Lijie
    Wang, Tiantian
    Liu, Huihui
    Liu, Shangguo
    Qin, Qing
    Liu, Xien
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (11) : 14282 - 14290
  • [34] Metal-Oxygen Octahedra Regulation of Iridium-Based Perovskites for Efficient and Durable Acidic Water Oxidation
    Yang, Yang
    Chen, Yuting
    Yan, Yueying
    Yao, Bohan
    Xing, Huanhuan
    Jiao, Dongxu
    Xing, Zhicai
    Wang, Dewen
    Yang, Xiurong
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [35] Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation
    Gao, Jiajian
    Xu, Cong-Qjao
    Hung, Sung-Fu
    Liu, Wei
    Cai, Weizheng
    Zeng, Zhiping
    Jia, Chunmiao
    Chen, Hao Ming
    Xiao, Hai
    Li, Jun
    Huang, Yanqiang
    Liu, Bin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) : 3014 - 3023
  • [36] Facile fabrication and nanostructure control of mesoporous iridium oxide films for efficient electrocatalytic water oxidation
    Chandra, Debraj
    Sato, Tetsuya
    Tanahashi, Yuki
    Takeuchi, Ryouchi
    Yagi, Masayuki
    ENERGY, 2019, 173 : 278 - 289
  • [37] Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation
    Zhao, Yanyan
    Yang, Ke R.
    Wang, Zechao
    Yan, Xingxu
    Cao, Sufeng
    Ye, Yifan
    Dong, Qi
    Zhang, Xizi
    Thorne, James E.
    Jin, Lei
    Materna, Kelly L.
    Trimpalis, Antonios
    Bai, Hongye
    Fakra, Sirine C.
    Zhong, Xiaoyan
    Wang, Peng
    Pan, Xiaoqing
    Guo, Jinghua
    Flytzani-Stephanopoulos, Maria
    Brudvig, Gary W.
    Batista, Victor S.
    Wang, Dunwei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (12) : 2902 - 2907
  • [38] Observing Defect Passivation of the Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells
    Liu, Zhongze
    Cao, Fengren
    Wang, Meng
    Wang, Min
    Li, Liang
    Advanced Materials, 2020, 132 (10) : 4190 - 4196
  • [39] Observing the Defect Passivation of Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells
    Liu, Zhongze
    Cao, Fengren
    Wang, Meng
    Wang, Min
    Li, Liang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (10) : 4161 - 4167
  • [40] Strain-modulated Ru-O Covalency in Ru-Sn Oxide Enabling Efficient and Stable Water Oxidation in Acidic Solution
    Xu, Yiming
    Mao, Zhixian
    Zhang, Jifang
    Ji, Jiapeng
    Zou, Yu
    Dong, Mengyang
    Fu, Bo
    Hu, Mengqing
    Zhang, Kaidi
    Chen, Ziyao
    Chen, Shan
    Yin, Huajie
    Liu, Porun
    Zhao, Huijun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (08)