Poster: AutoSense: Reliable 3D Bounding Box Prediction for Vehicles

被引:0
|
作者
Regmi, Hem [1 ]
Tavasoli, Reza [1 ]
Telaak, Joseph [1 ]
Sur, Sanjib [1 ]
Nelakuditi, Srihari [1 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
关键词
Object Detection; Deep Learning; Millimeter-wave Radars;
D O I
10.1145/3643832.3661416
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose AutoSense, a millimeter-wave(mmWave) wireless signal-based system for predicting 3D bounding boxes of vehicles. While cameras and LiDAR can be adversely affected by challenging-weather conditions such as heavy rain, fog, or snow, mmWave signals are less susceptible to these environmental factors, making them more resilient. As a result, AutoSense can complement other sensors for accurate 3D bounding box predictions in all weather conditions.
引用
收藏
页码:674 / 675
页数:2
相关论文
共 50 条
  • [1] Autoregressive Uncertainty Modeling for 3D Bounding Box Prediction
    Liu, YuXuan
    Mishra, Nikhil
    Sieb, Maximilian
    Shentu, Yide
    Abbeel, Pieter
    Chen, Xi
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 673 - 694
  • [2] PrimitivePose: Generic Model and Representation for 3D Bounding Box Prediction of Unseen Objects
    Kriegler, Andreas
    Beleznai, Csaba
    Gelautz, Margrit
    Murschitz, Markus
    Goebel, Kai
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2023, 17 (03) : 387 - 410
  • [3] 3D object Classification using Bounding box
    Malwe, Gauri
    Kshirsagar, Deepak
    Madkaikar, Ashish
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [4] Monocular 3D Object Detection with Bounding Box Denoising in 3D by Perceiver
    Liu, Xianpeng
    Zheng, Ce
    Cheng, Kelvin
    Xue, Nan
    Qi, Guo-Jun
    Wu, Tianfu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6413 - 6423
  • [5] PrimitivePose: 3D Bounding Box Prediction of Unseen Objects via Synthetic Geometric Primitives
    Kriegler, Andreas
    Beleznai, Csaba
    Murschitz, Markus
    Goebel, Kai
    Gelautz, Margrit
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 190 - 197
  • [6] Efficient Similarity Search on 3D Bounding Box Annotations
    Kriegel, Hans-Peter
    Petri, Marisa
    Schubert, Matthias
    Shekelyan, Michael
    Stockerl, Michael
    MEDICAL IMAGING 2012: ADVANCED PACS-BASED IMAGING INFORMATICS AND THERAPEUTIC APPLICATIONS, 2012, 8319
  • [7] 3D Bounding Box Estimation Using Deep Learning and Geometry
    Mousavian, Arsalan
    Anguelov, Dragomir
    Flynn, John
    Kosecka, Jana
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5632 - 5640
  • [8] PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation
    Xu, Danfei
    Anguelov, Dragomir
    Jain, Ashesh
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 244 - 253
  • [9] Vehicle Detection Using Point Cloud and 3D LIDAR Sensor to Draw 3D Bounding Box
    Gagana, H. S.
    Sunitha, N. R.
    Nishanth, K. N.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 983 - 992
  • [10] Multi-View Classification and 3D Bounding Box Regression Networks
    Pramerdorfer, Christopher
    Kampel, Martin
    Van Loock, Mark
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 734 - 739