JUMP BIFURCATION PHENOMENON DURING VARYING WIND SPEEDS IN FLOATING OFFSHORE WIND TURBINES

被引:0
|
作者
Jose, Alwin [1 ]
Falzarano, Jeffrey [2 ]
机构
[1] Texas A&M Univ, Galveston, TX 77554 USA
[2] Texas A&M Univ, College Stn, TX USA
关键词
Floating Offshore Wind Turbine; Bifurcation; Large pitch motion; FOWT Controller; Negative damping; PLATFORM MOTIONS;
D O I
10.1115/OMAE2020-18954
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Floating Offshore Wind Turbines (FOWTs) are susceptible to an instability which has come to be called "negative damping". Conventional land based wind turbine controllers when used with FOWTs may cause large amplitude platform pitch oscillations. Most controllers have since been improved to reduce motions due to this phenomenon. In this paper, the motions induced using one of the original controllers is studied. The current study is performed using the coupled time domain program FAST-SIMDYN that was developed in Marine Dynamics Laboratory (MDL) at Texas A&M University. It is capable of studying large amplitude motions of Floating Offshore Wind Turbines. FOWTs use various controller algorithms of operation based on the available wind speed depending on various power output objectives i.e., to either maximize or level out power absorption. It is observed that the transition region for controllers is often chaotic. So most studies focus on operations away from the transition region i.e., both below and above the transition wind speeds. Here we study the transition region using the theoretical insight of non-linear motion response of structures. This study reveals the presence of a very interesting and potentially hazardous nonlinear phenomenon, bifurcation. This finding could help explain the chaotic motion response that is observed in the transition region of controllers. Understanding the nature and cause of bifurcation could prove very useful for future design of FOWT controllers.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Identification of Vibration Modes in Floating Offshore Wind Turbines
    Serrano-Antonanazas, Mikel
    Sierra-Garcia, Jesus-Enrique
    Santos, Matilde
    Tomas-Rodriguez, Maria
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [22] Nonlinear hydrodynamics of floating offshore wind turbines: A review
    Zeng, Xinmeng
    Shao, Yanlin
    Feng, Xingya
    Xu, Kun
    Jin, Ruijia
    Li, Huajun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 191
  • [23] Study on Gyroscopic Effect of Floating Offshore Wind Turbines
    Jia-hao Chen
    Ai-guo Pei
    Peng Chen
    Zhi-qiang Hu
    China Ocean Engineering, 2021, 35 : 201 - 214
  • [24] Study on Gyroscopic Effect of Floating Offshore Wind Turbines
    Chen Jia-hao
    Pei Ai-guo
    Chen Peng
    Hu Zhi-qiang
    CHINA OCEAN ENGINEERING, 2021, 35 (02) : 201 - 214
  • [25] Evaluation of control methods for floating offshore wind turbines
    Yu, Wei
    Lemmer, Frank
    Schlipf, David
    Cheng, Po Wen
    Visser, Bart
    Links, Harmen
    Gupta, Neelabh
    Dankemann, Sabrina
    Counago, Bernardino
    Serna, Jose
    EERA DEEPWIND'2018, 15TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, 2018, 1104
  • [26] A review of modelling techniques for floating offshore wind turbines
    Otter, Aldert
    Murphy, Jimmy
    Pakrashi, Vikram
    Robertson, Amy
    Desmond, Cian
    WIND ENERGY, 2022, 25 (05) : 831 - 857
  • [27] Review of control technologies for floating offshore wind turbines
    Lopez-Queija, Javier
    Robles, Eider
    Jugo, Josu
    Alonso-Quesada, Santiago
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [28] Optimization of Mooring Systems for Floating Offshore Wind Turbines
    Benassai, Guido
    Campanile, Antonio
    Piscopo, Vincenzo
    Scamardella, Antonio
    COASTAL ENGINEERING JOURNAL, 2015, 57 (04)
  • [29] Experimental Research for Stabilizing Offshore Floating Wind Turbines
    Yang, Wenxian
    Tian, Wenye
    Hvalbye, Ole
    Peng, Zhike
    Wei, Kexiang
    Tian, Xinliang
    ENERGIES, 2019, 12 (10)
  • [30] Fault Tree Analysis of floating offshore wind turbines
    Kang, Jichuan
    Sun, Liping
    Guedes Soares, C.
    RENEWABLE ENERGY, 2019, 133 : 1455 - 1467