Volumetric Hippocampus Segmentation Using 3D U-Net Based On Transfer Learning

被引:1
|
作者
Widodo, Ramadhan Sanyoto Sugiharso [1 ]
Purnama, I. Ketut Eddy [1 ]
Rachmadi, Reza Fuad [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Dept Comp Engn, Fac Intelligent Elect & Informat Technol, Surabaya 60111, Indonesia
关键词
3D U-Net; Hippocampus; MRI; Transfer Learning;
D O I
10.1109/CIVEMSA58715.2024.10586572
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hippocampus, a crucial component of the human brain, is involved in fundamental cognitive processes such as learning, memory, and spatial navigation. However, it is susceptible to several neuropsychiatric disorders, including epilepsy, Alzheimer's disease, and depression. Utilizing Magnetic Resonance Imaging (MRI) techniques with efficient spatial navigation capabilities is crucial for assessing the physiological condition of the hippocampus. Labeling the hippocampus on MRI images primarily depends on manual methods, which are time-consuming and prone to errors between observers. The issue with MRI image processing lies in its demanding computational requirements and lengthy duration. Furthermore, there is a need for more three-dimensional hippocampal datasets for training deep-learning models, in which 3D labeled medical datasets are often scarce in medical imaging. This paper introduces a 3D U-Net architecture that utilizes a transfer learning model to segment the hippocampus from different pre-trained model scenarios. The results of all test scenarios indicate that the suggested model exhibits an average Dice Score, Intersection over Union (IoU) Score, and Sensitivity exceeding 0.85, 0.75, and 0.80, respectively. The proposed methodology enhances the model's ability to generalize within a shorter timeframe, even when dealing with limited volumetric datasets. These results are achieved through transfer learning, which decreases computational complexity by utilizing pre-learned characteristics from previous tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [22] Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified 3D U-Net
    Parmar, Bhavesh
    Parikh, Mehul
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 398 - 409
  • [23] Fully automatic intervertebral disc segmentation using multimodal 3D U-net
    Wang, Chuanbo
    Guo, Ye
    Chen, Wei
    Yu, Zeyun
    arXiv, 2020,
  • [24] Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D U-Net
    Wang, Chuanbo
    Guo, Ye
    Chen, Wei
    Yu, Zeyun
    2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2019, : 730 - 739
  • [25] Design and evaluation of a deep learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net
    Melerowitz, L.
    Sreenivasa, S.
    Nachbar, M.
    Stsefanenka, A.
    Beck, M.
    Senger, C.
    Predescu, N.
    Akram, S. Ullah
    Budach, V.
    Zips, D.
    Heiland, M.
    Nahles, S.
    Stromberger, C.
    CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2024, 47
  • [26] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)
  • [27] Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net
    van Elst, Sabien
    de Bloeme, Christiaan M. M.
    Noteboom, Samantha
    de Jong, Marcus C. C.
    Moll, Annette C. C.
    Goericke, Sophia
    de Graaf, Pim
    Caan, Matthan W. A.
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (03)
  • [28] Automated segmentation of computed tomography colonography images using a 3D U-Net
    Barr, Keiran
    Laframboise, Jacob
    Ungi, Tamas
    Hookey, Lawrence
    Fichtinger, Gabor
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [29] Automatic segmentation of nonhuman primate brain structures using 3D U-net
    Li, C.
    Zugaro, A. Galli
    Carr, Z.
    Korszen, S.
    Smith, G.
    Stigall, J.
    Salegio, E. A.
    Zagorchev, L.
    HUMAN GENE THERAPY, 2024, 35 (3-4) : A192 - A193
  • [30] Automated Segmentation of Head and Neck Cancer Patients Using 3D U-Net
    Tong, N.
    Gou, S.
    Sheng, K.
    MEDICAL PHYSICS, 2018, 45 (06) : E472 - E472