Using reservoir computing to construct scarred wave functions

被引:1
|
作者
Domingo, L. [1 ,2 ,3 ]
Borondo, J. [4 ]
Borondo, F. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain
[2] Univ Politecn Madrid, Grp Sistemas Complejos, Madrid 28035, Spain
[3] Inst Ciencias Matemat ICMAT, Campus Cantoblanco,Nicolas Cabrera 13-15, Madrid 28049, Spain
[4] Univ Pontificia Comillas, Dept Telemat & Comp, Madrid 28015, Spain
关键词
ORBITS;
D O I
10.1103/PhysRevE.109.044214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Scar theory is one of the fundamental pillars in the field of quantum chaos, and scarred functions are a superb tool to carry out studies in it. Several methods, usually semiclassical, have been described to cope with these two phenomena. In this paper, we present an alternative method, based on the novel machine learning algorithm known as reservoir computing, to calculate such scarred wave functions together with the associated eigenstates of the system. The resulting methodology achieves outstanding accuracy while reducing execution times by a factor of ten. As an illustration of the effectiveness of this method, we apply it to the widespread chaotic two-dimensional coupled quartic oscillator.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Tipping Point Detection Using Reservoir Computing
    Li, Xin
    Zhu, Qunxi
    Zhao, Chengli
    Qian, Xuzhe
    Zhang, Xue
    Duan, Xiaojun
    Lin, Wei
    RESEARCH, 2023, 6
  • [32] Blind sequence detection using reservoir computing
    Ruan, Xiukai
    Li, Chang
    Yang, Weibo
    Cui, Guihua
    Zhu, Haiyong
    Zhou, Zhili
    Dai, Yuxing
    Shi, Xiaojing
    DIGITAL SIGNAL PROCESSING, 2017, 62 : 81 - 90
  • [33] Numerical simulation of quantum dots: Quasi-periodic conductance fluctuations and 'scarred' wave-functions
    Akis, R
    Ferry, DK
    Bird, JP
    SUPERLATTICES AND MICROSTRUCTURES, 1996, 20 (03) : 323 - 329
  • [34] ITERATION AND LANGER METHODS FOR COMPUTING WAVE-FUNCTIONS
    PATIL, DC
    KORWAR, VM
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 43 (3-4): : 203 - 208
  • [35] Embedding theory of reservoir computing and reducing reservoir network using time delays
    Duan, Xing-Yue
    Ying, Xiong
    Leng, Si-Yang
    Kurths, Juergen
    Lin, Wei
    Ma, Huan-Fei
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [36] SOA-based reservoir computing using upsampling
    Manuylovich, E.
    Bednyakova, A. E.
    Ivoilov, D. A.
    Terekhov, I. S.
    Turitsyn, S. K.
    OPTICS LETTERS, 2024, 49 (20) : 5827 - 5830
  • [37] Experimental reservoir computing using VCSEL polarization dynamics
    Vatin, Jeremy
    Rontani, Damien
    Sciamanna, Marc
    OPTICS EXPRESS, 2019, 27 (13) : 18579 - 18584
  • [38] Electrocardiogram Classification Using Reservoir Computing With Logistic Regression
    Angel Escalona-Moran, Miguel
    Soriano, Miguel C.
    Fischer, Ingo
    Mirasso, Claudio R.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) : 892 - 898
  • [39] Quantum Reservoir Computing Using Arrays of Rydberg Atoms
    Bravo, Rodrigo Araiza
    Najafi, Khadijeh
    Gao, Xun
    Yelin, Susanne F.
    PRX QUANTUM, 2022, 3 (03):
  • [40] Time series reconstructing using calibrated reservoir computing
    Chen, Yeyuge
    Qian, Yu
    Cui, Xiaohua
    SCIENTIFIC REPORTS, 2022, 12 (01)