Review-Machine Learning-Driven Advances in Electrochemical Sensing: A Horizon Scan

被引:3
|
作者
Murugan, Kaviya [1 ,2 ]
Gopalakrishnan, Karnan [3 ,4 ]
Sakthivel, Kogularasu [5 ,6 ]
Subramanian, Sakthinathan [1 ,2 ]
Li, I-Cheng [7 ,8 ]
Lee, Yen-Yi [5 ,6 ,9 ]
Chiu, Te-Wei [1 ,2 ]
Chang-Chien, Guo-Ping [5 ,6 ,9 ]
机构
[1] Natl Taipei Univ Technol, Dept Mat & Mineral Resources Engn, 1,Sect 3,Chung Hsiao East Rd, Taipei 106, Taiwan
[2] Natl Taipei Univ Technol, Inst Mat Sci & Engn, 1,Sect 3,Zhongxiao East Rd, Taipei 106, Taiwan
[3] Fu Jen Catholic Univ, Grad Inst Appl Sci & Engn, New Taipei City 242062, Taiwan
[4] Pershing Technol Serv Corp, Mkt Tech Unit, Taipei, Taiwan
[5] Cheng Shiu Univ, Super Micro Mass Res & Technol Ctr, Kaohsiung 833301, Taiwan
[6] Cheng Shiu Univ, Ctr Environm Toxin & Emerging Contaminant Res, Kaohsiung 833301, Taiwan
[7] Cheng Shiu Univ, Conservat & Res Ctr, Kaohsiung 833301, Taiwan
[8] Cheng Shiu Univ, Dept Visual Commun Design, Kaohsiung 833301, Taiwan
[9] Cheng Shiu Univ, Inst Environm Toxin & Emerging Contaminant, Kaohsiung 833301, Taiwan
关键词
bioelectrochemistry; sensors; machine learning; deep learning; wearable sensors; health care devices; BIOSENSORS;
D O I
10.1149/1945-7111/ad6b4a
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The burgeoning intersection of machine learning (ML) with electrochemical sensing heralds a transformative era in analytical science, pushing the boundaries of what's possible in detecting and quantifying chemical substances with unprecedented precision and efficiency. This convergence has accelerated a number of discoveries, improving electrochemical sensors' sensitivity, selectivity, and ability to comprehend complicated data streams in real-time. Such advancements are crucial across various applications, from monitoring health biomarkers to detecting environmental pollutants and ensuring industrial safety. Yet, this integration is not without its challenges; it necessitates navigating intricate ethical considerations around data use, ensuring robust data privacy measures, and developing specialized software tools that balance accessibility and security. As the field progresses, addressing these challenges head-on is essential for harnessing the full potential of ML-enhanced electrochemical sensing. This review briefly explores these dimensions, spotlighting the significant technological strides, the ethical landscape, and the dynamic interplay between open-source and proprietary software solutions while also casting a forward gaze at the promising future directions of this interdisciplinary venture.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] MACHINE LEARNING-DRIVEN TEMPORAL SUBPHENOTYPES OF EARLY SEPSIS
    Ahamed, Younus
    Smith, Gordon
    Kumar, Gagan
    Nadkarni, Girish
    Adjeroh, Donald
    Sakhuja, Ankit
    CRITICAL CARE MEDICINE, 2024, 52
  • [22] Machine learning-driven structure prediction for iron hydrides
    Tahmasbi, Hossein
    Ramakrishna, Kushal
    Lokamani, Mani
    Cangi, Attila
    PHYSICAL REVIEW MATERIALS, 2024, 8 (03):
  • [23] Machine Learning-Driven Methods for Nanobody Affinity Prediction
    Feng, Hua
    Sun, Xuefeng
    Li, Ning
    Xu, Qian
    Li, Qin
    Zhang, Shenli
    Xing, Guangxu
    Zhang, Gaiping
    Wang, Fangyu
    ACS OMEGA, 2024, 9 (48): : 47893 - 47902
  • [24] Machine Learning-Driven Automated Scanning Probe Microscopy
    Liu, Yongtao
    Vasudevan, Rama
    Kelley, Kyle
    Ziatdinov, Maxim
    Kalinin, Sergei
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : A62 - A62
  • [25] Machine learning-driven algorithms for the container relocation problem
    Zhang, Canrong
    Guan, Hao
    Yuan, Yifei
    Chen, Weiwei
    Wu, Tao
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2020, 139 (102-131) : 102 - 131
  • [26] Machine learning-driven critical care decision making
    Coates, James T.
    de Koning, Christiaan
    JOURNAL OF THE ROYAL SOCIETY OF MEDICINE, 2022, 115 (06) : 236 - 238
  • [27] Machine Learning-Driven Digital Technologies for Educational Innovation
    Campos, Esmeralda
    Reveles, Sofia
    Future of Educational Innovation Workshop Series - Machine Learning-Driven Digital Technologies for Educational Innovation Workshop 2021, 2021,
  • [28] Machine Learning-Driven Algorithms for Network Anomaly Detection
    Islam, Md Sirajul
    Rouf, Mohammad Abdur
    Parvez, A. H. M. Shahariar
    Podder, Prajoy
    INVENTIVE COMPUTATION AND INFORMATION TECHNOLOGIES, ICICIT 2021, 2022, 336 : 493 - 507
  • [29] Machine Learning-Driven Approaches for Precision Antenna Alignment
    Patel, Nimesh A.
    Rao, Ramprasad
    Christensen, Robert
    Keating, Garrett
    Laguana, Kristen
    Mills, Adam
    Ramos, Angelu
    Schimpf, Shelbi H.
    Smith, Rachel
    Yen, Sheng-Feng
    Leiker, Patrick S.
    Norton, Timothy
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VIII, 2024, 13101
  • [30] Machine learning-driven optimization of enterprise resource planning (ERP) systems: a comprehensive review
    Jawad, Zainab Nadhim
    Balazs, Villanyi
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2024, 13 (01)