Explainable machine learning for unraveling solvent effects in polyimide organic solvent nanofiltration membranes

被引:35
|
作者
Ignacz, Gergo [1 ]
Alqadhi, Nawader [1 ]
Szekely, Gyorgy [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
来源
ADVANCED MEMBRANES | 2023年 / 3卷
关键词
Solute rejection; Nanofiltration; Organic solvent; Big data; Explainable AI; TRANSPORT; OPTIMIZATION; MODEL;
D O I
10.1016/j.advmem.2023.100061
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Understanding the effects of solvents on organic solvent nanofiltration currently depends on results obtained from small datasets, which slows down the industrial implementation of this technology. We present an in-depth study to identify and unify the effects of solvent parameters on solute rejection. For this purpose, we measured the rejection of 407 solutes in 11 common and green solvents using a polyimide membrane in a medium-throughput cross-flow nanofiltration system. Based on the large dataset, we experimentally verify that permeance and electronic effects of the solvent structure (Hildebrand parameters, electrotopological descriptors, and LogP) have strong impact on the average solute rejection. We furthermore identify the most important solvent parameters affecting solute rejection. Our dataset was used to build and test a graph neural network to predict the rejection of solutes. The results were rigorously tested against both internal and literature data, and demonstrated good generalization and robustness. Our model showed 0.124 (86.4% R2) and 0.123 (71.4 R2) root mean squared error for the internal and literature test sets, respectively. Explainable artificial intelligence helps understand and visualize the underlying effects of atoms and functional groups altering the rejection.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Graphene-based membranes for organic solvent nanofiltration
    Ruirui Hu
    Hongwei Zhu
    Science China Materials, 2018, 61 (03) : 429 - 431
  • [22] PEDOT:PSS Nanoparticle Membranes for Organic Solvent Nanofiltration
    Zhang, Jia-Chen
    Lv, Tian-Run
    Yin, Ming-Jie
    Ji, Yan-Li
    Jin, Cheng-Gang
    Chen, Bo-Hao
    An, Quan-Fu
    SMALL, 2024, 20 (52)
  • [23] Membranes for Organic Solvent Nanofiltration Based on Preassembled Nanoparticles
    Siddique, Humera
    Peeva, Ludmila G.
    Stoikos, Konstantinos
    Pasparakis, George
    Vamvakaki, Maria
    Livingston, Andrew G.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (03) : 1109 - 1121
  • [24] Surface modification methods of organic solvent nanofiltration membranes
    Amirilargani, M.
    Sadrzadeh, M.
    Sudholter, E. J. R.
    de Smet, L. C. P. M.
    CHEMICAL ENGINEERING JOURNAL, 2016, 289 : 562 - 582
  • [25] Investigation of mass transfer in organic solvent nanofiltration membranes
    Micovic, J.
    Hesse, L.
    Schmidt, P.
    Lutze, P.
    Sadowski, G.
    Gorak, A.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 302 - +
  • [26] Graphene-based membranes for organic solvent nanofiltration
    Ruirui Hu
    Hongwei Zhu
    Science China Materials, 2018, 61 : 429 - 431
  • [27] Graphene-based membranes for organic solvent nanofiltration
    Hu, Ruirui
    Zhu, Hongwei
    SCIENCE CHINA-MATERIALS, 2018, 61 (03) : 429 - 431
  • [28] Rejection modeling of ceramic membranes in organic solvent nanofiltration
    Blumenschein, Stefanie
    Boecking, Axel
    Kaetzel, Uwe
    Postel, Stefanie
    Wessling, Matthias
    JOURNAL OF MEMBRANE SCIENCE, 2016, 510 : 191 - 200
  • [29] Graphene oxide/cross-linked polyimide (GO/CLPI) composite membranes for organic solvent nanofiltration
    Liu, Mei-Ling
    Wang, Jue
    Guo, Jia-Lin
    Lu, Tian-Dan
    Cao, Xue-Li
    Sun, Shi-Peng
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2019, 146 : 182 - 189
  • [30] High flux membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization with solvent activation
    Solomon, Maria Fernanda Jimenez
    Bhole, Yogesh
    Livingston, Andrew Guy
    JOURNAL OF MEMBRANE SCIENCE, 2012, 423 : 371 - 382