Contrastive Tokens and Label Activation for Remote Sensing Weakly Supervised Semantic Segmentation

被引:2
|
作者
Hu, Zaiyi [1 ]
Gao, Junyu [1 ,2 ]
Yuan, Yuan [1 ]
Li, Xuelong [3 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[2] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
[3] China Telecom Corp Ltd, Inst Artificial Intelligence TeleAI, Beijing 100033, Peoples R China
关键词
Remote sensing; Semantic segmentation; Training; Task analysis; Semantics; Convolutional neural networks; Transformers; Deep learning; remote sensing images; vision transformer (ViT); weakly supervised semantic segmentation (WSSS);
D O I
10.1109/TGRS.2024.3385747
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, there has been remarkable progress in weakly supervised semantic segmentation (WSSS), with vision transformer (ViT) architectures emerging as a natural fit for such tasks due to their inherent ability to leverage global attention for comprehensive object information perception. However, directly applying ViT to WSSS tasks can introduce challenges. The characteristics of ViT can lead to an oversmoothing problem, particularly in dense scenes of remote sensing images, significantly compromising the effectiveness of class activation maps (CAMs) and posing challenges for segmentation. Moreover, existing methods often adopt multistage strategies, adding complexity and reducing training efficiency. To overcome these challenges, a comprehensive framework Contrastive Token and Foreground Activation (CTFA) based on the ViT architecture for WSSS of remote sensing images is presented. Our proposed method includes a contrastive token learning module (CTLM), incorporating both patch-wise and class-wise token learning to enhance model performance. In patch-wise learning, we leverage the semantic diversity preserved in intermediate layers of ViT and derive a relation matrix from these layers and employ it to supervise the final output tokens, thereby improving the quality of CAM. In class-wise learning, we ensure the consistency of representation between global and local tokens, revealing more entire object regions. Additionally, by activating foreground features in the generated pseudo label using a dual-branch decoder, we further promote the improvement of CAM generation. Our approach demonstrates outstanding results across three well-established datasets, providing a more efficient and streamlined solution for WSSS. Code will be available at: https://github.com/ZaiyiHu/CTFA.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] ICA-Net: improving class activation for weakly supervised semantic segmentation via joint contrastive and simulation learning
    Ye, Zhuang
    Liu, Ruyu
    Sun, Bo
    OPTOELECTRONICS LETTERS, 2025, 21 (03) : 188 - 192
  • [32] Less Is More: Label Recommendation for Weakly Supervised Point Cloud Semantic Segmentation
    Pan, Zhiyi
    Zhang, Nan
    Gao, Wei
    Liu, Shan
    Li, Ge
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4397 - 4405
  • [33] EXPLORING LABEL INITIALIZATION FOR WEAKLY SUPERVISED ALS POINT CLOUD SEMANTIC SEGMENTATION
    Wang, Puzuo
    Yao, Wei
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 151 - 158
  • [34] Curriculum learning with class-label composition for weakly supervised semantic segmentation
    Hwang, Dongjun
    Kim, Hyoseo
    Baek, Doyeol
    Kim, Hyunbin
    Kye, Inhye
    Choe, Junsuk
    PATTERN RECOGNITION LETTERS, 2025, 188 : 171 - 177
  • [35] Weakly Supervised RBM for Semantic Segmentation
    Li, Yong
    Liu, Jing
    Wang, Yuhang
    Lu, Hanqing
    Ma, Songde
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1888 - 1894
  • [36] A Survey of Weakly -supervised Semantic Segmentation
    Zhu, Kaiyin
    Xiong, Neal N.
    Lu, Mingming
    2023 IEEE 9TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD, BIGDATASECURITY, IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, HPSC AND IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY, IDS, 2023, : 10 - 15
  • [37] On the Effectiveness of Weakly Supervised Semantic Segmentation for Building Extraction From High-Resolution Remote Sensing Imagery
    Li, Zhenshi
    Zhang, Xueliang
    Xiao, Pengfeng
    Zheng, Zixian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3266 - 3281
  • [38] Clustering-Guided Class Activation for Weakly Supervised Semantic Segmentation
    Kim, Yeong Woo
    Kim, Wonjun
    IEEE ACCESS, 2024, 12 : 4871 - 4880
  • [39] DCAM: Disturbed class activation maps for weakly supervised semantic segmentation
    Lei, Jie
    Yang, Guoyu
    Wang, Shuaiwei
    Feng, Zunlei
    Liang, Ronghua
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 94
  • [40] Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
    Wei Zhai
    Pingyu Wu
    Kai Zhu
    Yang Cao
    Feng Wu
    Zheng-Jun Zha
    International Journal of Computer Vision, 2024, 132 (3) : 750 - 775