Deep Learning-Based Automated Measurement of Murine Bone Length in Radiographs

被引:0
|
作者
Rong, Ruichen [1 ]
Denton, Kristin [2 ]
Jin, Kevin W. [1 ]
Quan, Peiran [1 ]
Wen, Zhuoyu [1 ]
Kozlitina, Julia [3 ]
Lyon, Stephen [4 ]
Wang, Aileen [1 ]
Wise, Carol A. [2 ,3 ,5 ,6 ]
Beutler, Bruce [4 ]
Yang, Donghan M. [1 ]
Li, Qiwei [7 ]
Rios, Jonathan J. [2 ,3 ,5 ,6 ,8 ]
Xiao, Guanghua [1 ,8 ,9 ]
机构
[1] Univ Texas Southwestern Med Ctr, Quantitat Biomed Res Ctr, Peter ODonnell Jr Sch Publ Hlth, Dallas, TX 75390 USA
[2] Scottish Rite Children, Ctr Pediat Bone Biol & Translat Res, Dallas, TX 75219 USA
[3] Univ Texas Southwestern Med Ctr, McDermott Ctr Human Growth & Dev, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr, Ctr Genet Host Def, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr, Dept Orthopaed Surg, Dallas, TX 75390 USA
[6] Univ Texas Southwestern Med Ctr, Dept Pediat, Dallas, TX 75390 USA
[7] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75083 USA
[8] Univ Texas Southwestern Med Ctr, Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA
[9] Univ Texas Southwestern Med Ctr, Dept Bioinformat, Dallas, TX 75390 USA
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 07期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
keypoint detection; deep learning; mouse models;
D O I
10.3390/bioengineering11070670
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genetic mouse models of skeletal abnormalities have demonstrated promise in the identification of phenotypes relevant to human skeletal diseases. Traditionally, phenotypes are assessed by manually examining radiographs, a tedious and potentially error-prone process. In response, this study developed a deep learning-based model that streamlines the measurement of murine bone lengths from radiographs in an accurate and reproducible manner. A bone detection and measurement pipeline utilizing the Keypoint R-CNN algorithm with an EfficientNet-B3 feature extraction backbone was developed to detect murine bone positions and measure their lengths. The pipeline was developed utilizing 94 X-ray images with expert annotations on the start and end position of each murine bone. The accuracy of our pipeline was evaluated on an independent dataset test with 592 images, and further validated on a previously published dataset of 21,300 mouse radiographs. The results showed that our model performed comparably to humans in measuring tibia and femur lengths (R-2 > 0.92, p-value = 0) and significantly outperformed humans in measuring pelvic lengths in terms of precision and consistency. Furthermore, the model improved the precision and consistency of genetic association mapping results, identifying significant associations between genetic mutations and skeletal phenotypes with reduced variability. This study demonstrates the feasibility and efficiency of automated murine bone length measurement in the identification of mouse models of abnormal skeletal phenotypes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] FingerNet: Deep Learning-Based Robust Finger Joint Detection from Radiographs
    Lee, Sungmin
    Choi, Minsuk
    Choi, Hyun-soo
    Park, Moon Seok
    Yoon, Sungroh
    2015 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2015, : 620 - 623
  • [42] Pulmonary contusion: automated deep learning-based quantitative visualization
    Sarkar, Nathan
    Zhang, Lei
    Campbell, Peter
    Liang, Yuanyuan
    Li, Guang
    Khedr, Mustafa
    Khetan, Udit
    Dreizin, David
    EMERGENCY RADIOLOGY, 2023, 30 (04) : 435 - 441
  • [43] A review on deep learning-based automated lunar crater detection
    Chaini, Chinmayee
    Jha, Vijay Kumar
    EARTH SCIENCE INFORMATICS, 2024, 17 (05) : 3863 - 3898
  • [44] Deep Learning-Based Automated Modulation Classification for Cognitive Radio
    Mendis, Gihan J.
    Wei, Jin
    Madanayake, Arjuna
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS), 2016,
  • [45] Deep Transfer Learning-Based Automated Identification of Bird Song
    Das, Nabanita
    Padhy, Neelamadhab
    Dey, Nilanjan
    Bhattacharya, Sudipta
    Tavares, Joao Manuel R. S.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (04): : 33 - 45
  • [46] Testing Deep Learning-based Visual Perception for Automated Driving
    Abrecht, Stephanie
    Gauerhof, Lydia
    Gladisch, Christoph
    Groh, Konrad
    Heinzemann, Christian
    Woehrle, Matthias
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2021, 5 (04)
  • [47] Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
    van der Kamp, Ananda
    de Bel, Thomas
    van Alst, Ludo
    Rutgers, Jikke
    van den Heuvel-Eibrink, Marry M.
    Mavinkurve-Groothuis, Annelies M. C.
    van der Laak, Jeroen
    de Krijger, Ronald R.
    CANCERS, 2023, 15 (09)
  • [48] Deep learning-based, fully automated, pediatric brain segmentation
    Kim, Min-Jee
    Hong, Eunpyeong
    Yum, Mi-Sun
    Lee, Yun-Jeong
    Kim, Jinyoung
    Ko, Tae-Sung
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [49] Fully Automated Deep Learning-based Sex Recognition in Pigs
    Boeken, Bjoern
    Dennemann, Ralf
    Keselj, Andreas
    FLEISCHWIRTSCHAFT, 2021, 101 (08): : 90 - 97
  • [50] Automated deep learning-based wide-band receiver
    Azari, Bahar
    Cheng, Hai
    Soltani, Nasim
    Li, Haoqing
    Li, Yanyu
    Belgiovine, Mauro
    Imbiriba, Tales
    D'Oro, Salvatore
    Melodia, Tommaso
    Wang, Yanzhi
    Closas, Pau
    Chowdhury, Kaushik
    Erdogmus, Deniz
    COMPUTER NETWORKS, 2022, 218