Stochastic density functional theory combined with Langevin dynamics for warm dense matter

被引:1
|
作者
Hadad, Rebecca Efrat [1 ]
Roy, Argha [2 ]
Rabani, Eran [3 ,4 ,5 ]
Redmer, Ronald [2 ]
Baer, Roi [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, Fritz Haber Res Ctr Mol Dynam, IL-91904 Jerusalem, Israel
[2] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Tel Aviv Univ, Raymond & Beverly Sackler Ctr Computat Mol & Mat S, IL-69978 Tel Aviv, Israel
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ELECTRICAL-CONDUCTIVITY; ISOSBESTIC POINTS; PSEUDOPOTENTIALS; EQUATION; TIME; IRON;
D O I
10.1103/PhysRevE.109.065304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This study overviews and extends a recently developed stochastic finite-temperature Kohn-Sham density functional theory to study warm dense matter using Langevin dynamics, specifically under periodic boundary conditions. The method's algorithmic complexity exhibits nearly linear scaling with system size and is inversely proportional to the temperature. Additionally, a linear-scaling stochastic approach is introduced to assess the Kubo-Greenwood conductivity, demonstrating exceptional stability for dc conductivity. Utilizing the developed tools, we investigate the equation of state, radial distribution, and electronic conductivity of hydrogen at a temperature of 30 000 K. As for the radial distribution functions, we reveal a transition of hydrogen from gaslike to liquidlike behavior as its density exceeds 4 g/cm3. As for the electronic conductivity as a function of the density, we identified a remarkable isosbestic point at frequencies around 7 eV, which may be an additional signature of a gas-liquid transition in hydrogen at 30 000 K.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Nonlinear Electronic Density Response in Warm Dense Matter
    Dornheim, Tobias
    Vorberger, Jan
    Bonitz, Michael
    PHYSICAL REVIEW LETTERS, 2020, 125 (08)
  • [22] Mixed stochastic-deterministic time-dependent density functional theory: application to stopping power of warm dense carbon
    White, Alexander J.
    Collins, Lee A.
    Nichols, Katarina
    Hu, S. X.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (17)
  • [23] Excited electron dynamics modeling of warm dense matter
    Su, Julius T.
    Goddard, William A., III
    PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [24] Low frequency structural dynamics of warm dense matter
    Gregori, G.
    Gericke, D. O.
    PHYSICS OF PLASMAS, 2009, 16 (05)
  • [25] Warm dense matter through classical molecular dynamics
    Calisti, A.
    Ferri, S.
    Marciante, M.
    Talin, B.
    HIGH ENERGY DENSITY PHYSICS, 2014, 13 : 1 - 8
  • [26] Nonadiabatic dynamics In warm dense matter and small molecules
    Akimov, Alexey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [27] Nonlocal free-energy density functional for a broad range of warm dense matter simulations
    Ma, Cheng
    Chen, Min
    Xie, Yu
    Xu, Qiang
    Mi, Wenhui
    Wang, Yanchao
    Ma, Yanming
    PHYSICAL REVIEW B, 2024, 110 (08)
  • [28] Ab Initio Studies on the Stopping Power of Warm Dense Matter with Time-Dependent Orbital-Free Density Functional Theory
    Ding, Y. H.
    White, A. J.
    Hu, S. X.
    Certik, O.
    Collins, L. A.
    PHYSICAL REVIEW LETTERS, 2018, 121 (14)
  • [29] Reproducibility of real-time time-dependent density functional theory calculations of electronic stopping power in warm dense matter
    Kononov, Alina
    White, Alexander J.
    Nichols, Katarina A.
    Hu, S. X.
    Baczewski, Andrew D.
    PHYSICS OF PLASMAS, 2024, 31 (04)
  • [30] Quantum Modeling of Electronic Charge Density in Warm Dense Matter
    Miloshevsky, Gennady
    Hassanein, Ahmed
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) : 2508 - 2509