Unilateral global interval bifurcation and one-sign solutions for Kirchhoff type problems

被引:0
|
作者
Shen, Wenguo [1 ]
机构
[1] Guangdong Univ Sci & Technol, Coll Gen Educ, Dongguan 523083, Guangdong, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 07期
关键词
unilateral global interval bifurcation; one-sign solutions; Kirchhoff type problems; ONE-SIGN SOLUTIONS;
D O I
10.3934/math.2024953
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Kirchhoff type problems: { - ( R ohm |del u | 2 dx )triangle u = A u 3 + g ( u , A ) , in ohm , u = 0 , on partial derivative ohm , where A is a parameter. Under some natural hypotheses on g and ohm, we establish a unilateral global bifurcation result from interval for the above problem. By applying the above result, under some suitable assumptions on nonlinearity, we shall investigate the existence of one -sign solutions for a class of Kirchhoff type problems.
引用
收藏
页码:19546 / 19556
页数:11
相关论文
共 50 条
  • [41] Multiplicity of Nontrivial Solutions for Kirchhoff Type Problems
    Bitao Cheng
    Xian Wu
    Jun Liu
    Boundary Value Problems, 2010
  • [42] Existence and bifurcation of positive solutions for fractional p$$ p $$-Kirchhoff problems
    Wang, Linlin
    Xing, Yuming
    Zhang, Binlin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2413 - 2432
  • [43] Existence and multiplicity of positive solutions for a class of singular Kirchhoff type problems with sign-changing potential
    Li, Hong-Ying
    Tang, Yu-Ting
    Liao, Jia-Feng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2971 - 2986
  • [44] Sign-changing solutions for Kirchhoff-type variable-order fractional Laplacian problems
    Zhou, Jianwen
    Yang, Yueting
    Wang, Wenbo
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [45] Multiple positive solutions for the critical Kirchhoff type problems involving sign-changing weight functions
    Xie, Weihong
    Chen, Haibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 135 - 161
  • [46] Sign-changing solutions for Kirchhoff-type variable-order fractional Laplacian problems
    Jianwen Zhou
    Yueting Yang
    Wenbo Wang
    Boundary Value Problems, 2024
  • [47] MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL
    Liu, Gao-Sheng
    Lei, Chun-Yu
    Guo, Liu-Tao
    Rong, Hong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [48] GLOBAL BIFURCATION DIAGRAMS OF ONE NODE SOLUTIONS IN A CLASS OF DEGENERATE BOUNDARY VALUE PROBLEMS
    Lopez-Gomez, Julian
    Molina-Meyer, Marcela
    Rabinowitz, Paul H.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (03): : 923 - 946
  • [49] Bifurcation diagrams of one-dimensional Kirchhoff-type equations
    Shibata, Tetsutaro
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 356 - 368
  • [50] Eigenvalue, Unilateral Global Bifurcation and Constant Sign Solution for a Fractional Laplace Problem
    Yang, Bian-Xia
    Sun, Hong-Rui
    Feng, Zhaosheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (13):