Implementation and Evaluation of IEEE 802.11ax TargetWake Time Feature in ns-3

被引:0
|
作者
Mozaffariahrar, Erfan [1 ]
Menth, Michael [1 ]
Avallone, Stefano [2 ]
机构
[1] Univ Tubingen, Tubingen, Germany
[2] Univ Naples Federico II, Naples, Italy
关键词
Wi-Fi; 802.11ax; TWT; ns-3;
D O I
10.1145/3659111.3659112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The TargetWake Time (TWT) feature has been introduced in Wi-Fi technology in 802.11ah and has been extended by IEEE 802.11ax as an optional feature. It allows stations (STAs) to sleep for some intervals and wake up at a Target Wake Time to send and receive their traffic. This feature reduces energy consumption of devices. While the standards are completed, there is no publicly available implementation of TWT in a simulation framework. The contribution of this paper is a description of the TWT feature and its implementation in the Network Simulator-3 (ns-3) as an integration into the existing Wi-Fi module. We describe the structure of the implementation and report on test suites that have been provided to ensure the correct operation of the code. In addition, we carried out some simple experiments that illustrate the effect of TWT. The implementation will be part of the official Wi-Fi module of ns-3 and can be utilized for systematic evaluation of the TWT feature and for novel Wi-Fi management concepts that leverage TWT.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] Maximization of Timely Throughput with Target Wake Time in IEEE 802.11ax
    Roy, Rishabh
    Bhat, Rajshekhar V.
    Hathi, Preyas
    Akhtar, Nadeem
    Balasubramanya, Naveen Mysore
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 647 - 652
  • [22] An Extension to IEEE 802.11 Power Save Mode for NS-3
    Chumchu, Prawit
    2015 SEVENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, 2015, : 799 - 804
  • [23] Spectrum Efficient Support of IEEE 802.11ba in an IEEE 802.11ax Network
    Wilhelmsson, Leif R.
    Lopez, Miguel M.
    2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-SPRING), 2019,
  • [24] OFDMA Uplink Scheduling in IEEE 802.11ax Networks
    Bankov, Dmitry
    Didenko, Andre
    Khorov, Evgeny
    Lyakhov, Andrey
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [25] MAC Technology of IEEE 802.11ax: Progress and Tutorial
    Mao Yang
    Bo Li
    Zhongjiang Yan
    Mobile Networks and Applications, 2021, 26 : 1122 - 1136
  • [26] IEEE 802.11ax: HIGH-EFFICIENCY WLANS
    Bellalta, Boris
    IEEE WIRELESS COMMUNICATIONS, 2016, 23 (01) : 38 - 46
  • [27] MAC Technology of IEEE 802.11ax: Progress and Tutorial
    Yang, Mao
    Li, Bo
    Yan, Zhongjiang
    Mobile Networks and Applications, 2021, 26 (03) : 1122 - 1136
  • [28] 5G还是IEEE 802.11ax?
    Cees Links
    中国集成电路, 2018, 27 (08) : 33 - 38
  • [29] MAC Technology of IEEE 802.11ax: Progress and Tutorial
    Yang, Mao
    Li, Bo
    Yan, Zhongjiang
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (03): : 1122 - 1136
  • [30] Joint optimization of target wake time mechanism and scheduling for IEEE 802.11ax
    Karaca, Mehmet
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 (03) : 1659 - 1671