Dynamic acoustic metasurfaces based on magnetic levitation

被引:2
|
作者
Xia, Pu [1 ,2 ]
Shi, Jinjie [1 ,2 ]
Chu, Hongchen [1 ,2 ]
Zhou, Xiaoxi [3 ,4 ]
Liu, Xiaozhou [1 ,2 ]
Lai, Yun [1 ,2 ]
机构
[1] Nanjing Univ, Sch Phys, MOE Key Lab Modern Acoust, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[3] Suzhou City Univ, Sch Opt & Elect Informat, Suzhou 215104, Peoples R China
[4] Suzhou City Univ, Suzhou Key Lab Biophoton, Suzhou, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 21卷 / 05期
基金
中国国家自然科学基金; 中国博士后科学基金; 国家重点研发计划;
关键词
attention. Various approaches; e.g; geometric tuning;
D O I
10.1103/PhysRevApplied.21.054023
中图分类号
O59 [应用物理学];
学科分类号
摘要
Tunable acoustic metasurfaces have garnered substantial attention in recent years, offering an approach to manipulate acoustic waves efficiently. Despite the rapid progress in this field, obtaining a dynamic acoustic metasurface with a noncontact design remains a challenging goal. Here, we theoretically propose and experimentally demonstrate dynamic acoustic metasurfaces designed using magnetic levitation. The meta-atom consists of an acoustic cavity with a floating magnet. By varying the magnitude of the current in a coil located at the bottom of the cavity, the position of the magnet can be dynamically adjusted, effectively changing the height of the cavity. The reflection phase can thus be continuously modulated in real time, enabling the switching of versatile functionalities. Our work opens up a magnetic levitation approach towards intelligent acoustic metasurfaces with noncontact control.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Magnetic field in a thick superconducting solenoid for dynamic levitation of objects
    Dushkin, C
    Nawa, M
    Fujita, T
    Nakabayashi, S
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (12) : 10212 - 10214
  • [42] Magnetic field in a thick superconducting solenoid for dynamic levitation of objects
    Dushkin, C., 1600, American Institute of Physics Inc. (91):
  • [43] Permanent magnet based magnetic levitation kit
    Egito Coelho, Marco Antonio
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2015, 47 (04) : 963 - 973
  • [44] Active magnetic levitation guide based on magnetic damping control
    Zheng, Zhongqiao
    Xu, Minzheng
    MODERN PHYSICS LETTERS B, 2017, 31 (19-21):
  • [45] A Study on Levitation Mechanism of Bending Magnetic Levitation System: Fundamental Consideration on Dynamic Analysis of Vibration Characteristics
    Ogawa, Kazuki
    Miyazaki, Riku
    Funada, Kohmei
    Ikeda, Keigo
    Uchino, Daigo
    Kato, Taro
    Endo, Ayato
    Narita, Takayoshi
    Kato, Hideaki
    IFAC PAPERSONLINE, 2022, 55 (27): : 329 - 334
  • [46] Magnetic levitation
    Sadiku, Matthew N. O.
    Kujuobi, Cajetan M.
    IEEE Potentials, 2006, 25 (02): : 41 - 42
  • [47] Magnetic levitation
    Rudall, BH
    ROBOTICA, 1997, 15 : 243 - 243
  • [48] Acoustic levitation applied for reducing undesired lateral drift of magnetic helical microrobots
    Xu, Lei
    Gong, De
    Chen, Kehan
    Cai, Jun
    Zhang, Wenqiang
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (18)
  • [49] Contactless weighing method based on deep learning and acoustic levitation
    Wang, Yingwei
    Jiang, Liangxu
    Chen, Ziyi
    Zhang, Han
    Li, Xinbo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [50] A study of acoustic levitation process based on laser holographic interferometry
    Zhang, L
    Li, EP
    Feng, W
    Hong, ZY
    Xie, WJ
    Ma, YH
    ACTA PHYSICA SINICA, 2005, 54 (05) : 2038 - 2042