Enhancing Software Defect Prediction accuracy using Modified Entropy Calculation in Random Forest Algorithm

被引:0
|
作者
Suryawanshi, Ranjeetsingh [1 ]
Kadam, Amol [1 ]
机构
[1] Bharati Vidyapeeth Deemed Be Univ, Coll Engn, Pune, India
关键词
Random forest; decision tree; classification; prediction; entropy; Taylor series; NETWORKS;
D O I
10.52783/jes.754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Imagine you are trying to classify software defect for a large dataset. How will you choose the best algorithm to do that? For the above problem we have various algorithms like Random Forest, Support Vector Machine, Neural Networks, Naive Bayes, K -Nearest Neighbours, Decision Tree, Logistic Regression etc. One of the most used methods is Random Forest algorithm, which uses multiple Decision Trees to make predictions. However, this algorithm relies on a complex calculation called Entropy, which measures the uncertainty in the data. Entropy function that uses natural logarithm which may be time consuming calculation. Is there a better way to calculate entropy? In this research, have explored a different way to calculate the natural logarithm using the Taylor series expression. It is a series consisting of sum of infinite terms that approximates any function by using its derivatives. We further modified the Random Forest algorithm by replacing the natural logarithm the Taylor series expression in the Entropy formula. We tested our modified algorithm on dataset and compared its performance with the original Entropy formula. We found that our modification in the algorithm has improved the accuracy of the algorithm on software defect prediction.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [41] Fast Defect Detection Algorithm on the Variety Surface with Random Forest using GPUs
    Kwon, Bae-guen
    Kang, Dong-joong
    2011 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2011, : 1135 - 1136
  • [42] Handling class overlap and imbalance using overlap driven under-sampling with balanced random forest in software defect prediction
    Dar, Abdul Waheed
    Farooq, Sheikh Umar
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2024,
  • [43] Prediction Analysis of Novel Random Forest Algorithm and K Nearest Neighbor Algorithm in Heart Disease Prediction with an Improved Accuracy Rate
    Poojitha, T.
    Mahaveerakannan, R.
    CARDIOMETRY, 2022, (25): : 1554 - 1561
  • [44] Accurate Prediction and Detection of Suicidal Risk using Random Forest Algorithm
    Saravanan, N.
    Moheshkumar, G.
    Shaid, Mohammed V. M.
    Purushothman, S.
    Sanjai, Gokul, V
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 287 - 292
  • [45] Environmental Fire Hazard Detection and Prediction using Random Forest Algorithm
    Thakkar, Ranak
    Abhyankar, Varad
    Reddy, Polaka Divya
    Prakash, Surya
    2022 International Conference for Advancement in Technology, ICONAT 2022, 2022,
  • [46] Prediction of the concrete compressive strength using improved random forest algorithm
    Khodaparasti M.
    Alijamaat A.
    Pouraminian M.
    Journal of Building Pathology and Rehabilitation, 2023, 8 (2)
  • [47] Classification and Prediction of Heart Disease using Novel Random Forest Algorithm by Comparing Logistic Regression for Obtaining Better Accuracy
    Poojitha, T.
    Mahaveerakannan, R.
    CARDIOMETRY, 2022, (25): : 1538 - 1545
  • [48] Controller Monitoring System In Software Defined Networks Using Random Forest Algorithm
    Kirutika, K.
    Vetriselvi, V.
    Parthasarathi, Ranjani
    Rao, G. Subrahmanya V. R. K.
    2019 IEEE 53RD INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST 2019), 2019,
  • [49] Improved Accuracy of Calculation of Vehicle Crash Severity in Highways using Random Forest over Multi-Layer Perceptron Algorithm
    Vignesh, S.
    Rekha, Sashi K.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1513 - 1519
  • [50] A novel software defect prediction approach using modified objective cluster analysis
    Ren, Junhua
    Zhang, Qing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (09):