Complete synchronization of discrete-time variable-order fractional neural networks with time

被引:3
|
作者
Li, Tong [1 ]
Li, Hong-Li [1 ,2 ]
Zhang, Long [1 ,2 ]
Zheng, Song [3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
[2] Xinjiang Key Lab Appl Math, Urumqi 830017, Peoples R China
[3] Zhejiang Univ Finance & Econ, Sch Data Sci, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete-time; Variable-order; Neural networks; Complete synchronization; Fractional-order; STABILITY ANALYSIS; RIEMANN;
D O I
10.1016/j.cjph.2024.08.022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper investigates complete synchronization of discrete-time variable-order fractional neural networks (DVFNNs) with time delays. By discrete inequality technologies and nabla Laplace transform, two stability lemmas are derived which are generalizations of the constant- order case. Furthermore, several complete synchronization criteria for DVFNNs are proposed by utilizing inequality techniques and Lyapunov method. Finally, a numerical example is provided to verify the theoretical results. This paper also provides a stability analysis method for variable-order fractional discrete-time systems.
引用
收藏
页码:883 / 894
页数:12
相关论文
共 50 条
  • [11] Quasi-projective and complete synchronization of discrete-time fractional-order delayed neural networks
    Zhang, Xiao-Li
    Li, Hong-Li
    Yu, Yongguang
    Zhang, Long
    Jiang, Haijun
    NEURAL NETWORKS, 2023, 164 : 497 - 507
  • [12] Discrete-Time Fractional, Variable-Order PID Controller for a Plant with Delay
    Oziablo, Piotr
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    ENTROPY, 2020, 22 (07)
  • [13] Fractional discrete neural networks with variable order: solvability, finite time stability and synchronization
    Hioual, Amel
    Alomari, Saleh
    Al-Tarawneh, Hassan
    Ouannas, Adel
    Grassi, Giuseppe
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [14] Quasi-synchronization of discrete-time tempered fractional-order memristive neural networks with time delays
    Zhang, Xiao-Li
    Yu, Yongguang
    Wang, Hu
    Nie, Di
    NEUROCOMPUTING, 2025, 619
  • [15] Quasi-synchronization and stabilization of discrete-time fractional-order memristive neural networks with time delays
    Zhang, Xiao-Li
    Li, Hong-Li
    Yu, Yongguang
    Wang, Zuolei
    INFORMATION SCIENCES, 2023, 647
  • [16] Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays
    Zhang, Xiao-Li
    Li, Hong-Li
    Kao, Yonggui
    Zhang, Long
    Jiang, Haijun
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 433
  • [17] On Variable-Order Fractional Discrete Neural Networks: Solvability and Stability
    Hioual, Amel
    Ouannas, Adel
    Oussaeif, Taki-Eddine
    Grassi, Giuseppe
    Batiha, Iqbal M.
    Momani, Shaher
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [18] Complete synchronization of discrete-time fractional-order Cohen-Grossberg neural networks with time delays via adaptive nonlinear controller
    Li, Tong
    Li, Hong-Li
    Fan, Xiaolin
    Zhang, Long
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 4708 - 4722
  • [19] Fractional-, variable-order PID controller implementation based on two discrete-time fractional order operators
    Mozyrska, Dorota
    Oziablo, Piotr
    Wyrwas, Malgorzata
    2019 IEEE 7TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION (ICCMA 2019), 2019, : 26 - 32
  • [20] Synchronization of delayed discrete-time neural networks
    Wu Ran-Chao
    ACTA PHYSICA SINICA, 2009, 58 (01) : 139 - 142