The Smith normal form of the walk matrix of the Dynkin graph An
被引:0
|
作者:
Huang, Liangwei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R China
Huang, Liangwei
[1
]
Xu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R China
Xu, Yan
[1
]
Zhang, Haicheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R China
Zhang, Haicheng
[1
]
机构:
[1] Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210023, Peoples R China
Smith normal form;
Walk matrix;
Dynkin graph;
Equitable partition;
D O I:
10.1016/j.laa.2024.06.003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we give the rank of the walk matrix of the Dynkin graph A(n), and prove that its Smith normal form is diag (1 , ... , 1(}(sic)n/2(sic)), 0, ... , 0). (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Department of Mathematics and Statistics, Minnesota State University, Mankato, MN 56001, United StatesDepartment of Mathematics and Statistics, Minnesota State University, Mankato, MN 56001, United States
Kim, In-Jae
Shader, Bryan L.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, University of Wyoming, Laramie, WY 82071, United StatesDepartment of Mathematics and Statistics, Minnesota State University, Mankato, MN 56001, United States