NEGATIVE EIGENVALUES OF THE CONFORMAL LAPLACIAN

被引:0
|
作者
Henry, Guillermo [1 ,2 ,3 ]
Petean, Jimmy [4 ]
机构
[1] Univ Buenos Aires, Dept Matemat, FCEyN, Buenos Aires, Argentina
[2] CONICET UBA, IMAS, Ciudad Univ Pab 1,C1428EHA, Buenos Aires, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[4] CIMAT, AP 402, Guanajuato 36000, Gto, Mexico
关键词
SIMPLY CONNECTED MANIFOLDS; SCALAR CURVATURE; YAMABE;
D O I
10.1090/proc/16798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed differentiable manifold of dimension at least 3. Let Lambda 0(M) 0 ( M ) be the minimum number of non -positive eigenvalues that the conformal Laplacian of a metric on M can have. We prove that for any k greater than or equal to Lambda 0(M), 0 ( M ), there exists a Riemannian metric on M such that its conformal Laplacian has exactly k negative eigenvalues. Also, we discuss upper bounds for Lambda 0(M). 0 ( M ).
引用
收藏
页码:3085 / 3096
页数:12
相关论文
共 50 条