Janus nanofibers with multiple Li+ transport channels and outstanding thermal stability for all-solid-state composite polymer electrolytes

被引:3
|
作者
Xiang, Hengying [1 ,2 ]
Deng, Nanping [1 ,2 ]
Gao, Lu [1 ,2 ]
Cheng, Bowen [1 ,2 ]
Kang, Weimin [1 ,2 ]
机构
[1] Tiangong Univ, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
LITHIUM METAL ANODE; ION-TRANSPORT; BATTERIES; PROGRESS;
D O I
10.1039/d4ta01836b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid electrolytes with high ionic conductivity, dendrite suppression, and compatibility with high-voltage electrodes are needed for application in all-solid-state lithium metal batteries (ASSLMBs). Here, an optimized composite polymer electrolyte (CPE) that can meet the above-mentioned requirements by introducing a Janus nanofiber membrane prepared by side-by-side electrospinning technology into a PEO-based electrolyte, is reported. Janus nanofibers have asymmetric structural characteristics, with positively charged oxygen vacancy enriched yttrium oxide (Y2O3) doped zirconium dioxide (ZrO2) (YSZ) nanoparticle interconnected nanofibers on one side and poly-m-phenyleneisophthalamide (PMIA) nanofibers on the other side. The former YSZ nanoparticle interconnected nanofiber has a permeable ceramic phase inside and can also form continuous organic-inorganic interfaces with the PEO matrix outside, achieving fast Li+ transport. Additionally, the oxygen vacancies on the surface of YSZ can also combine with anions of lithium salt, releasing more Li+. The latter PMIA nanofibers provide a robust skeleton support for the CPEs, ensuring outstanding mechanical strength and safety for the thin CPEs even at elevated temperatures. Therefore, the CPEs presented prominent ionic conductivity (1.61 x 10(-4) S cm(-1)) and excellent ionic transference number (0.50) at 50 degrees C. Meanwhile, the Li & Vert;Li cells have remarkable lithium stripping/plating reversibility, and the LiFePO4 & Vert;Li cells display ultra-long stable cycle life over 5000 cycles. Besides, the CPEs also present excellent compatibility with LiNi0.8Mn0.1Co0.1O2. More strikingly, the CPEs have excellent cycling stability even at 40 degrees C, and the LiFePO4 & Vert;Li flexible pouch cells cycle normally even under folding, piercing, and cutting. The research will provide new insight into the construction of Janus nanofibers for CPEs towards the prospect of practical high-energy ASSLMBs.
引用
收藏
页码:16022 / 16033
页数:12
相关论文
共 50 条
  • [41] Composite Solid-State Electrolyte with Vertical Ion Transport Channels for All-Solid-State Lithium Metal Batteries
    Sun, Hao
    Cheng, Guangzeng
    Wang, Haoran
    Gao, Yanan
    Wu, Jingyi
    SMALL, 2025, 21 (03)
  • [42] Enhancement of cycling stability of all-solid-state lithium-ion batteries with composite polymer electrolytes incorporating Li6.25La3Zr2Al0.25O12 nanofibers
    Yi Zhang
    Wei Feng
    Yichao Zhen
    Peiyao Zhao
    Xiaohui Wang
    Longtu Li
    Ionics, 2020, 26 : 4239 - 4246
  • [43] Enhancement of cycling stability of all-solid-state lithium-ion batteries with composite polymer electrolytes incorporating Li6.25La3Zr2Al0.25O12 nanofibers
    Zhang, Yi
    Feng, Wei
    Zhen, Yichao
    Zhao, Peiyao
    Wang, Xiaohui
    Li, Longtu
    IONICS, 2020, 26 (09) : 4239 - 4246
  • [44] Coordination polymer-reinforced composite polymer electrolyte for all-solid-state Li-metal batteries
    Yuan, Jiaxi
    Dong, Hao
    Wang, Bin
    Qiu, Ming
    Liu, Zhendong
    Wu, Xiaojun
    Zhong, Sheng
    Tong, Gangsheng
    Chen, Zhenying
    Zhang, Jichao
    Zhang, Qing
    Zhu, Jinhui
    Zhuang, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [45] Interfacial Architecture for Extra Li+ Storage in All-Solid-State Lithium Batteries
    Bum Ryong Shin
    Young Jin Nam
    Jin Wook Kim
    Young-Gi Lee
    Yoon Seok Jung
    Scientific Reports, 4
  • [46] Interfacial Architecture for Extra Li+ Storage in All-Solid-State Lithium Batteries
    Shin, Bum Ryong
    Nam, Young Jin
    Kim, Jin Wook
    Lee, Young-Gi
    Jung, Yoon Seok
    SCIENTIFIC REPORTS, 2014, 4
  • [47] Conducting Composite Polymer-Based Solid-State Electrolyte with High Ion Conductivity via Amorphous Condensed Structure and Multiple Li+ Transport Channels
    Li, Yueshan
    Yuan, Weihao
    Lu, Fei
    Shen, Yibo
    Li, Da
    Cong, Fei
    Zhu, Pingwei
    Li, Yunling
    Liu, Pengxiang
    Huang, Yudong
    Li, Jun
    Hu, Zhen
    SMALL, 2024, 20 (47)
  • [48] Electronically Conductive Polymer Enhanced Solid-State Polymer Electrolytes for All-Solid-State Lithium Batteries
    Smdani, Md Gulam
    Hasan, Md Wahidul
    Razzaq, Amir Abdul
    Xing, Weibing
    ENERGIES, 2024, 17 (17)
  • [49] Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries
    Thomas A. Yersak
    Fang Hao
    Chansoon Kang
    James R. Salvador
    Qinglin Zhang
    Hernando Jesus Gonzalez Malabet
    Mei Cai
    Journal of Solid State Electrochemistry, 2022, 26 : 709 - 718
  • [50] Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries
    Falco, Marisa
    Ferrari, Stefania
    Appetecchi, Giovanni Battista
    Gerbaldi, Claudio
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) : 850 - 871