Janus nanofibers with multiple Li+ transport channels and outstanding thermal stability for all-solid-state composite polymer electrolytes

被引:3
|
作者
Xiang, Hengying [1 ,2 ]
Deng, Nanping [1 ,2 ]
Gao, Lu [1 ,2 ]
Cheng, Bowen [1 ,2 ]
Kang, Weimin [1 ,2 ]
机构
[1] Tiangong Univ, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
LITHIUM METAL ANODE; ION-TRANSPORT; BATTERIES; PROGRESS;
D O I
10.1039/d4ta01836b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid electrolytes with high ionic conductivity, dendrite suppression, and compatibility with high-voltage electrodes are needed for application in all-solid-state lithium metal batteries (ASSLMBs). Here, an optimized composite polymer electrolyte (CPE) that can meet the above-mentioned requirements by introducing a Janus nanofiber membrane prepared by side-by-side electrospinning technology into a PEO-based electrolyte, is reported. Janus nanofibers have asymmetric structural characteristics, with positively charged oxygen vacancy enriched yttrium oxide (Y2O3) doped zirconium dioxide (ZrO2) (YSZ) nanoparticle interconnected nanofibers on one side and poly-m-phenyleneisophthalamide (PMIA) nanofibers on the other side. The former YSZ nanoparticle interconnected nanofiber has a permeable ceramic phase inside and can also form continuous organic-inorganic interfaces with the PEO matrix outside, achieving fast Li+ transport. Additionally, the oxygen vacancies on the surface of YSZ can also combine with anions of lithium salt, releasing more Li+. The latter PMIA nanofibers provide a robust skeleton support for the CPEs, ensuring outstanding mechanical strength and safety for the thin CPEs even at elevated temperatures. Therefore, the CPEs presented prominent ionic conductivity (1.61 x 10(-4) S cm(-1)) and excellent ionic transference number (0.50) at 50 degrees C. Meanwhile, the Li & Vert;Li cells have remarkable lithium stripping/plating reversibility, and the LiFePO4 & Vert;Li cells display ultra-long stable cycle life over 5000 cycles. Besides, the CPEs also present excellent compatibility with LiNi0.8Mn0.1Co0.1O2. More strikingly, the CPEs have excellent cycling stability even at 40 degrees C, and the LiFePO4 & Vert;Li flexible pouch cells cycle normally even under folding, piercing, and cutting. The research will provide new insight into the construction of Janus nanofibers for CPEs towards the prospect of practical high-energy ASSLMBs.
引用
收藏
页码:16022 / 16033
页数:12
相关论文
共 50 条
  • [1] PAN@UiO66 Nanofibers with Fast Li+ Transfer and Outstanding Mechanical Performance for Composite Solid Polymer Electrolytes
    Liu, Yulong
    Xu, Huanyan
    Wang, Tianci
    Chen, Minghua
    ACS APPLIED ENERGY MATERIALS, 2025,
  • [2] Composite Polymer Solid Electrolytes for All-Solid-State Sodium Batteries
    He, Yiying
    Yang, Shoumeng
    Liu, Congcong
    Ouyang, Yue
    Li, Yanni
    Zhu, Hangmin
    Yao, Yu
    Yang, Hai
    Rui, Xianhong
    Yu, Yan
    SMALL METHODS, 2025,
  • [3] Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells
    Judez, Xabier
    Zhang, Heng
    Li, Chunmei
    Gebresilassie Eshetu, Gebrekidan
    Zhang, Yan
    Gonzalez-Marcos, Jose A.
    Armand, Michel
    Rodriguez-Martinez, Lide M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (15): : 3473 - 3477
  • [4] Designing composite polymer electrolytes for all-solid-state lithium batteries
    Grundish, Nicholas S.
    Goodenough, John B.
    Khani, Hadi
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 30
  • [5] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    JOURNAL OF POWER SOURCES, 2021, 482
  • [6] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    Journal of Power Sources, 2022, 482
  • [7] Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Liu, Sijie
    Zhou, Le
    Zhong, Tingjun
    Wu, Xin
    Neyts, Kristiaan
    ADVANCED ENERGY MATERIALS, 2024,
  • [8] Mechanisms of the Accelerated Li+ Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries
    Duan, Song
    Qian, Lanting
    Zheng, Yun
    Zhu, Yanfei
    Liu, Xiang
    Dong, Li
    Yan, Wei
    Zhang, Jiujun
    ADVANCED MATERIALS, 2024, 36 (32)
  • [9] Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All-Solid-State Batteries
    Liu, Quanyi
    Jiang, Lan
    Zheng, Penglun
    Sun, Jichang
    Liu, Chuanbang
    Chai, Jingchao
    Li, Xue
    Zheng, Yun
    Liu, Zhihong
    CHEMICAL RECORD, 2022, 22 (10):
  • [10] Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries
    Mabuchi, Takuya
    Nakajima, Koki
    Tokumasu, Takashi
    MICROMACHINES, 2021, 12 (09)