GATFormer: A Graph-based Transformer for Long-Term Forecasting of Traffic Overcrowding

被引:0
|
作者
Zhang, Ke [1 ]
Liu, Hengchang [2 ]
Clarke, Siobhan [1 ]
机构
[1] Trinity Coll Dublin, Sch Comp Sci & Stat, 42A Pearse St, Dublin D02 R123, Ireland
[2] Univ Sci & Technol China, Sch Comp Sci, Hefei, Anhui, Peoples R China
基金
爱尔兰科学基金会;
关键词
NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Urban traffic forecasting is a critical issue in modern cities. In recent years, there has been a growing interest in using data from automated fare collection (AFC) systems to analyze passenger movement patterns and identify and predict travel behaviors. Urban transportation networks can be optimised using this analysis and by implementing machine learning algorithms. Accurately forecasting traffic flows (e.g., for identifying congested stations) is important for enhancing passenger satisfaction and safety. However, most existing methods analyze only station-level data for short-term flow forecasting, failing to consider the complex interconnected relations across the transportation network and the impact of long-term trends. In this paper, we propose a novel approach, GATFormer, that combines Graph Attention Networks (GAT) with a sequence-to-sequence attention mechanism to predict long-term overcrowding at traffic nodes (e.g., congestion at stations) and providing information to both transport network managers for policy decision making and to passengers for traffic guidance. Our method includes two parts: anticipation of both where and when overcrowding will take place. The proposed method is applied to real subway AFC data from both Suzhou and Hangzhou, China. The experimental results show that the model outperforms other baselines in long-term overcrowded station prediction.
引用
收藏
页码:1629 / 1635
页数:7
相关论文
共 50 条
  • [41] A Graph-Based Temporal Attention Framework for Multi-Sensor Traffic Flow Forecasting
    Zhang, Shaokun
    Guo, Yao
    Zhao, Peize
    Zheng, Chuanpan
    Chen, Xiangqun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7743 - 7758
  • [42] Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Xin, Xiaoyang
    Cheng, Zesheng
    Xia, Fengqian
    Li, Jianbo
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (08) : 120 - 133
  • [43] TRECK: Long-Term Traffic Forecasting With Contrastive Representation Learning
    Zheng, Xiao
    Bagloee, Saeed Asadi
    Sarvi, Majid
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 16964 - 16977
  • [44] Long-term forecasting of Internet traffic for Pakistan Internet exchange
    Alam, Mehreen
    2007 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, 2007, : 326 - 331
  • [45] Long-term forecasting oriented to urban expressway traffic situation
    Su, Fei
    Dong, Honghui
    Jia, Limin
    Qin, Yong
    Tian, Zhao
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (01)
  • [46] Network traffic forecasting model based on long-term intuitionistic fuzzy time series
    Fan, Xiaoshi
    Wang, Yanan
    Zhang, Mengyu
    INFORMATION SCIENCES, 2020, 506 : 131 - 147
  • [47] A spatial-temporal graph gated transformer for traffic forecasting
    Bouchemoukha, Haroun
    Zennir, Mohamed Nadjib
    Alioua, Ahmed
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (07):
  • [48] Transformer-Based Spatiotemporal Graph Diffusion Convolution Network for Traffic Flow Forecasting
    Wei, Siwei
    Yang, Yang
    Liu, Donghua
    Deng, Ke
    Wang, Chunzhi
    ELECTRONICS, 2024, 13 (16)
  • [49] Deep transformer-based heterogeneous spatiotemporal graph learning for geographical traffic forecasting
    Shi, Guangsi
    Luo, Linhao
    Song, Yongze
    Li, Jing
    Pan, Shirui
    ISCIENCE, 2024, 27 (07)
  • [50] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21827 - 21839