Convergence in simulating global soil organic carbon by structurally different models after data assimilation

被引:3
|
作者
Tao, Feng [1 ,2 ]
Houlton, Benjamin Z. [1 ,3 ]
Huang, Yuanyuan [4 ]
Wang, Ying-Ping [5 ]
Manzoni, Stefano [6 ]
Ahrens, Bernhard [7 ]
Mishra, Umakant [8 ,9 ]
Jiang, Lifen [10 ]
Huang, Xiaomeng [2 ]
Luo, Yiqi [10 ]
机构
[1] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14850 USA
[2] Tsinghua Univ, Inst Global Change Studies, Dept Earth Syst Sci, Minist Educ,Key Lab Earth Syst Modelling, Beijing 100084, Peoples R China
[3] Cornell Univ, Dept Global Dev, Ithaca, NY USA
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing, Peoples R China
[5] CSIRO Environm, Clayton, Vic, Australia
[6] Stockholm Univ, Bolin Ctr Climate Res, Dept Phys Geog, Stockholm, Sweden
[7] Max Planck Inst Biogeochem, Jena, Germany
[8] Sandia Natl Labs, Computat Biol & Biophys, Livermore, CA USA
[9] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Emeryville, CA USA
[10] Cornell Univ, Sch Integrat Plant Sci, Soil & Crop Sci Sect, Ithaca, NY USA
基金
中国国家自然科学基金; 美国食品与农业研究所; 美国国家科学基金会; 欧洲研究理事会;
关键词
big data assimilation; deep learning; inter-model uncertainty; model parameterization; model structure; soil organic carbon; EARTH SYSTEM MODELS; USE EFFICIENCY; TERRESTRIAL ECOSYSTEMS; LITTER DECOMPOSITION; MICROBIAL CARBON; UNCERTAINTY; MATTER; COMMUNITY; DYNAMICS; STORAGE;
D O I
10.1111/gcb.17297
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Current biogeochemical models produce carbon-climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first-order or Michaelis-Menten kinetics at the global scale. Nevertheless, a wider range of data with high-quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics-function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions. Our study demonstrates the critical role of observational data in reducing uncertainties of global soil organic carbon (SOC) simulations by structurally different models. Two process-based models structurally featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. Integrating common observational datasets with process-based models will be critical to inform model development, constrain predictions, and reveal new findings and patterns of key processes in the soil carbon cycle.image
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A simple soil organic-matter model for biomass data assimilation in community-level carbon contracts
    Traore, P. C. S.
    Bostick, W. M.
    Jones, J. W.
    Koo, J.
    Goita, K.
    Bado, B. V.
    ECOLOGICAL APPLICATIONS, 2008, 18 (03) : 624 - 636
  • [32] On the use of different constitutive models in data assimilation for slope stability
    Mohsan, Muhammad
    Vardon, Philip J.
    Vossepoel, Femke C.
    COMPUTERS AND GEOTECHNICS, 2021, 138
  • [33] Simulating eroded soil organic carbon with the SWAT-C model
    Zhang, Xuesong
    ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 102 : 39 - 48
  • [34] Simulating effects of grazing on soil organic carbon stocks in Mongolian grasslands
    Chang, Xiaofeng
    Bao, Xiaoying
    Wang, Shiping
    Wilkes, Andreas
    Erdenetsetseg, Baasandai
    Baival, Batkhishig
    Avaadorj, Danzan-osor
    Maisaikhan, Temuujin
    Damdinsuren, Bolormaa
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2015, 212 : 278 - 284
  • [35] The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data
    Sweetman, AJ
    Dalla Valle, M
    Prevedouros, K
    Jones, KC
    CHEMOSPHERE, 2005, 60 (07) : 959 - 972
  • [36] Impact of global data assimilation system atmospheric models on astroparticle showers
    Grisales-Casadiegos, J.
    Sarmiento-Cano, C.
    Nunez, L. A.
    CANADIAN JOURNAL OF PHYSICS, 2022, 100 (03) : 152 - 157
  • [37] Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation
    Dumedah, Gift
    Walker, Jeffrey P.
    JOURNAL OF HYDROMETEOROLOGY, 2014, 15 (01) : 359 - 375
  • [38] Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?
    Seiler, Christian
    Melton, Joe R.
    Arora, Vivek K.
    Sitch, Stephen
    Friedlingstein, Pierre
    Anthoni, Peter
    Goll, Daniel
    Jain, Atul K.
    Joetzjer, Emilie
    Lienert, Sebastian
    Lombardozzi, Danica
    Luyssaert, Sebastiaan
    Nabel, Julia E. M. S.
    Tian, Hanqin
    Vuichard, Nicolas
    Walker, Anthony P.
    Yuan, Wenping
    Zaehle, Soenke
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (05)
  • [39] Global crop production increase by soil organic carbon
    Ma, Yuqing
    Woolf, Dominic
    Fan, Mingsheng
    Qiao, Lei
    Li, Rong
    Lehmann, Johannes
    NATURE GEOSCIENCE, 2023, 16 (12) : 1159 - 1165
  • [40] Global dataset of soil organic carbon in tidal marshes
    Maxwell, Tania L.
    Rovai, Andre S.
    Adame, Maria Fernanda
    Adams, Janine B.
    Alvarez-Rogel, Jose
    Austin, William E. N.
    Beasy, Kim
    Boscutti, Francesco
    Boettcher, Michael E.
    Bouma, Tjeerd J.
    Bulmer, Richard H.
    Burden, Annette
    Burke, Shannon A.
    Camacho, Saritta
    Chaudhary, Doongar R.
    Chmura, Gail L.
    Copertino, Margareth
    Cott, Grace M.
    Craft, Christopher
    Day, John
    de los Santos, Carmen B.
    Denis, Lionel
    Ding, Weixin
    Ellison, Joanna C.
    Ewers Lewis, Carolyn J.
    Giani, Luise
    Gispert, Maria
    Gontharet, Swanne
    Gonzalez-Perez, Jose A.
    Gonzalez-Alcaraz, M. Nazaret
    Gorham, Connor
    Graversen, Anna Elizabeth L.
    Grey, Anthony
    Guerra, Roberta
    He, Qiang
    Holmquist, James R.
    Jones, Alice R.
    Juanes, Jose A.
    Kelleher, Brian P.
    Kohfeld, Karen E.
    Krause-Jensen, Dorte
    Lafratta, Anna
    Lavery, Paul S.
    Laws, Edward A.
    Leiva-Duenas, Carmen
    Loh, Pei Sun
    Lovelock, Catherine E.
    Lundquist, Carolyn J.
    Macreadie, Peter, I
    Mazarrasa, Ines
    SCIENTIFIC DATA, 2023, 10 (01)