Collective Intrinsic Motivation of a Multi-agent System Based on Reinforcement Learning Algorithms

被引:0
|
作者
Bolshakov, Vladislav [1 ]
Sakulin, Sergey [1 ]
Alfimtsev, Alexander [1 ]
机构
[1] BMSTU, Moscow, Russia
关键词
Multi-agent reinforcement learning; Intrinsic motivation; Reward shaping; LEVEL;
D O I
10.1007/978-3-031-47718-8_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the great challenges in reinforcement learning is learning an optimal behavior in environments with sparse rewards. Solving tasks in such setting require effective exploration methods that are often based on intrinsic rewards. Plenty of real-world problems involve sparse rewards and many of them are further complicated by multi-agent setting, where the majority of intrinsic motivation methods are ineffective. In this paper we address the problem of multi-agent environments with sparse rewards and propose to combine intrinsic rewards and multi-agent reinforcement learning (MARL) technics to create the Collective Intrinsic Motivation of Agents (CIMA) method. CIMA uses both the external reward and the intrinsic collective reward from the cooperative multi-agent system. The proposed method can be used along with any MARL method as base reinforcement learning algorithm. We compare CIMA with several state-of-the-art MARL methods within multi-agent environment with sparse rewards designed in StarCraft II.
引用
收藏
页码:655 / 670
页数:16
相关论文
共 50 条
  • [41] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [42] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [43] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [44] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [45] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635
  • [46] Hierarchical multi-agent reinforcement learning
    Ghavamzadeh, Mohammad
    Mahadevan, Sridhar
    Makar, Rajbala
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2006, 13 (02) : 197 - 229
  • [47] Partitioning in multi-agent reinforcement learning
    Sun, R
    Peterson, T
    FROM ANIMALS TO ANIMATS 6, 2000, : 325 - 332
  • [48] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [49] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +
  • [50] Modeling of route planning system based on Q value-based dynamic programming with multi-agent reinforcement learning algorithms
    Zolfpour-Arokhlo, Mortaza
    Selamat, Ali
    Hashim, Siti Zaiton Mohd
    Afkhami, Hossein
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 29 : 163 - 177