Topological wave equation eigenmodes in continuous 2D periodic geometries

被引:0
|
作者
Dias, R. G. [1 ,2 ]
Madail, L. [1 ,2 ,3 ]
Lykholat, A. [1 ,2 ]
Andrade, R. [1 ,2 ]
Marques, A. M. [1 ,2 ]
机构
[1] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal
[3] Int Iberian Nanotechnol Lab, P-4715310 Braga, Portugal
关键词
topological insulators; wave equation; artificial lattices;
D O I
10.1088/1361-6404/ad4932
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this paper, we address the topological characterization of the wave equation solutions in continuous two-dimensional (2D) periodic geometries with Neumann or Dirichlet boundary conditions. This characterization is relevant in the context of 2D vibrating membranes and our approach allows one to understand the topological behavior recently observed in acoustic three-dimensional artificial lattices. In particular, the dependence of the topological behavior on the experimental positioning of the coupling channels is explained using simple arguments and a simple method of construction of an equivalent effective tight-binding Hamiltonian is presented.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Examination of Radiation from 2D Periodic Leaky-Wave Antennas
    Sengupta, Sohini
    Jackson, David R.
    Long, Stuart A.
    2014 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2014, : 76 - 76
  • [42] Analysis and enhancement of flexural wave stop bands in 2D periodic plates
    Song, Yubao
    Feng, Leping
    Wen, Jihong
    Yu, Dianlong
    Wen, Xisen
    PHYSICS LETTERS A, 2015, 379 (22-23) : 1449 - 1456
  • [43] Plane wave propagation in 2D and 3D monodisperse periodic granular media
    Mohith Manjunath
    Amnaya P. Awasthi
    Philippe H. Geubelle
    Granular Matter, 2014, 16 : 141 - 150
  • [44] A wave-based optimization framework for 1D and 2D periodic structures
    Boukadia, R. F.
    Deckers, E.
    Claeys, C.
    Ichchou, M.
    Desmet, W.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 139 (139)
  • [45] Relativistic surface-wave oscillators with 1D and 2D periodic structures
    Ginzburg, N. S.
    Zaslavskii, V. Yu.
    Malkin, A. M.
    Sergeev, A. S.
    TECHNICAL PHYSICS, 2012, 57 (12) : 1692 - 1705
  • [46] Plane wave propagation in 2D and 3D monodisperse periodic granular media
    Manjunath, Mohith
    Awasthi, Amnaya P.
    Geubelle, Philippe H.
    GRANULAR MATTER, 2014, 16 (01) : 141 - 150
  • [47] Relativistic surface-wave oscillators with 1D and 2D periodic structures
    N. S. Ginzburg
    V. Yu. Zaslavskii
    A. M. Malkin
    A. S. Sergeev
    Technical Physics, 2012, 57 : 1692 - 1705
  • [48] Note on nonlinear Schrodinger equation, KdV equation and 2D topological Yang-Mills-Higgs theory
    Nian, Jun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (15):
  • [49] REALIZATION OF 2D (2,2)-PERIODIC ENCODERS BY MEANS OF 2D PERIODIC SEPARABLE ROESSER MODELS
    Napp, Diego
    Pereira, Ricardo
    Pinto, Raquel
    Rocha, Paula
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2019, 29 (03) : 527 - 539
  • [50] Exact periodic and blow up solutions for 2D Ginzburg-Landau equation
    Zhong, Penghong
    Yang, Ronghui
    Yang, Ganshan
    PHYSICS LETTERS A, 2008, 373 (01) : 19 - 22