Topological wave equation eigenmodes in continuous 2D periodic geometries

被引:0
|
作者
Dias, R. G. [1 ,2 ]
Madail, L. [1 ,2 ,3 ]
Lykholat, A. [1 ,2 ]
Andrade, R. [1 ,2 ]
Marques, A. M. [1 ,2 ]
机构
[1] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal
[3] Int Iberian Nanotechnol Lab, P-4715310 Braga, Portugal
关键词
topological insulators; wave equation; artificial lattices;
D O I
10.1088/1361-6404/ad4932
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this paper, we address the topological characterization of the wave equation solutions in continuous two-dimensional (2D) periodic geometries with Neumann or Dirichlet boundary conditions. This characterization is relevant in the context of 2D vibrating membranes and our approach allows one to understand the topological behavior recently observed in acoustic three-dimensional artificial lattices. In particular, the dependence of the topological behavior on the experimental positioning of the coupling channels is explained using simple arguments and a simple method of construction of an equivalent effective tight-binding Hamiltonian is presented.
引用
收藏
页数:17
相关论文
共 50 条