Predictive machine learning models for survival outcomes in patients with pancreatic cancer.

被引:1
|
作者
Shen, Yang-Chen
Chen, Po-See
Lin, Cheng-Feng
Liu, Ping-Yen
Lin, Peng-Chan
Yen, Chia-Jui
Shan, Yan-Shen
机构
[1] Natl Cheng Kung Univ, Inst Behav Med, Coll Med, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Coll Med, Dept Phys Therapy, Tainan, Taiwan
[3] Natl Cheng Kung Univ, Inst Clin Med, Coll Med, Tainan, Taiwan
[4] Natl Cheng Kung Univ, Natl Cheng Kung Univ Hosp, Coll Med, Dept Oncol, Tainan, Taiwan
[5] Natl Cheng Kung Univ, Natl Cheng Kung Univ Hosp, Coll Med, Dept Surg, Tainan, Taiwan
关键词
283-237-267; 227-149-9863-9995; 613-135-2370; 4; 2;
D O I
10.1200/JCO.2024.42.3_suppl.625
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:625 / 625
页数:1
相关论文
共 50 条
  • [21] Survival analysis for lung cancer patients: A comparison of Cox regression and machine learning models
    Germer, Sebastian
    Rudolph, Christiane
    Labohm, Louisa
    Katalinic, Alexander
    Rath, Natalie
    Rausch, Katharina
    Holleczek, Bernd
    Handels, Heinz
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 191
  • [22] Machine Learning Models to Predict Survival Outcomes According to the Surgical Approach of Primary Radical Hysterectomy in Patients with Early Cervical Cancer
    Kim, Se Ik
    Lee, Sungyoung
    Choi, Chel Hun
    Lee, Maria
    Suh, Dong Hoon
    Kim, Hee Seung
    Kim, Kidong
    Chung, Hyun Hoon
    No, Jae Hong
    Kim, Jae-Weon
    Park, Noh Hyun
    Song, Yong-Sang
    Kim, Yong Beom
    CANCERS, 2021, 13 (15)
  • [23] Predicted prognosis of pancreatic cancer patients by machine learning
    Higashi, M.
    Yokoyama, S.
    Tanimoto, A.
    VIRCHOWS ARCHIV, 2020, 477 : S198 - S198
  • [24] Predicted Prognosis of Patients with Pancreatic Cancer by Machine Learning
    Yokoyama, Seiya
    Hamada, Taiji
    Higashi, Michiyo
    Matsuo, Kei
    Maemura, Kosei
    Kurahara, Hiroshi
    Horinouchi, Michiko
    Hiraki, Tsubasa
    Sugimoto, Tomoyuki
    Akahane, Toshiaki
    Yonezawa, Suguru
    Kornmann, Marko
    Batra, Surinder K.
    Hollingsworth, Michael A.
    Tanimoto, Akihide
    CLINICAL CANCER RESEARCH, 2020, 26 (10) : 2411 - 2421
  • [25] Dynamic Predictive Models With Visualized Machine Learning for Assessing Chondrosarcoma Overall Survival
    Li, Wenle
    Wang, Gui
    Wu, Rilige
    Dong, Shengtao
    Wang, Haosheng
    Xu, Chan
    Wang, Bing
    Li, Wanying
    Hu, Zhaohui
    Chen, Qi
    Yin, Chengliang
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [26] Improved survival prediction for pancreatic cancer using machine learning and regression
    Floyd, Stuart H.
    Alvarez, Sergio A.
    Ruiz, Carolina
    Hayward, John
    Sullivan, Mary
    Tseng, Jennifer F.
    Whalen, Giles F.
    GASTROENTEROLOGY, 2007, 132 (04) : A869 - A870
  • [27] Multimodal survival prediction in advanced pancreatic cancer using machine learning
    Keyl, J.
    Kasper, S.
    Wiesweg, M.
    Goetze, J.
    Schoenrock, M.
    Sinn, M.
    Berger, A.
    Nasca, E.
    Kostbade, K.
    Schumacher, B.
    Markus, P.
    Albers, D.
    Treckmann, J.
    Schmid, K. W.
    Schildhaus, H-U
    Siveke, J. T.
    Schuler, M.
    Kleesiek, J.
    ESMO OPEN, 2022, 7 (05)
  • [28] Preoperative prediction of lymph node status in patients with colorectal cancer. Developing a predictive model using machine learning
    Hartwig, Morten
    Brauner, Karoline Bendix
    Vogelsang, Rasmus
    Gogenur, Ismail
    INTERNATIONAL JOURNAL OF COLORECTAL DISEASE, 2022, 37 (12) : 2517 - 2524
  • [29] Preoperative prediction of lymph node status in patients with colorectal cancer. Developing a predictive model using machine learning
    Morten Hartwig
    Karoline Bendix Bräuner
    Rasmus Vogelsang
    Ismail Gögenur
    International Journal of Colorectal Disease, 2022, 37 : 2517 - 2524
  • [30] The negative predictive value of endoscopic ultrasound (EUS) in patients with suspected pancreatic cancer.
    Nguyen, P
    Ghazourian, NS
    Hata, K
    Chang, KJ
    GASTROINTESTINAL ENDOSCOPY, 1998, 47 (04) : AB151 - AB151