Revisitation of "Implicit Quiescent Optical Solitons with Complex Ginzburg-Landau Equation Having Nonlinear Chromatic Dispersion": Linear Temporal Evolution

被引:0
|
作者
Adem, Abdullahi Rashid [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Yildirim, Yakup [6 ,7 ,8 ]
Alshomrani, Ali Saleh [3 ]
机构
[1] Univ South Africa, Dept Math Sci, Pretoria, South Africa
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA USA
[3] King Abdulaziz Univ, Ctr Modern Math Sci & Their Applicat, Dept Math, Math Modeling & Appl Computat Res Grp, Jeddah, Saudi Arabia
[4] Dunarea De Jos Univ Galati, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, Galati, Romania
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Medunsa, South Africa
[6] Biruni Univ, Dept Comp Engn, Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, Kyrenia, Cyprus
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 02期
关键词
nonlinear dispersion; stationary solitons; SCHRODINGER-EQUATION;
D O I
10.37256/cm.5220244356
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current paper revisits the retrieval of quiescent optical solitons for the complex Ginzburg-Landau equation with nonlinear chromatic dispersion and several forms of self-phase modulation. The results obtained in this work consist of explicit or implicit quiescent optical solitons, unlike the previous report, which were expressed in terms of quadratures. Additionally, this study addresses two additional forms of self-phase modulation: the saturating law and the exponential law. This exploration yields quiescent optical solitons expressed in terms of quadratures for the first time.
引用
收藏
页码:2165 / 2187
页数:23
相关论文
共 50 条
  • [21] Diverse optical solitons to the complex Ginzburg-Landau equation with Kerr law nonlinearity in the nonlinear optical fiber
    Wang, Kang-Jia
    Si, Jing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):
  • [22] Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes
    Zafar, Asim
    Shakeel, Muhammad
    Ali, Asif
    Akinyemi, Lanre
    Rezazadeh, Hadi
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
  • [23] Optical solitons with complex Ginzburg–Landau equation
    Mohammad Mirzazadeh
    Mehmet Ekici
    Abdullah Sonmezoglu
    Mostafa Eslami
    Qin Zhou
    Abdul H. Kara
    Daniela Milovic
    Fayequa B. Majid
    Anjan Biswas
    Milivoj Belić
    Nonlinear Dynamics, 2016, 85 : 1979 - 2016
  • [24] Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion
    Das, Amiya
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Alshomrani, Ali S.
    Belic, Milivoj R.
    CHINESE JOURNAL OF PHYSICS, 2019, 61 : 255 - 261
  • [25] The Evolution Solutions for Complex Ginzburg-Landau equation
    Wang, Hong-Lei
    Xiang, Chun-Huan
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1630 - 1633
  • [26] A collective variable approach and stabilization for dispersion-managed optical solitons in the quintic complex Ginzburg-Landau equation as perturbations of the nonlinear Schrodinger equation
    Fewo, SI
    Kenfack-Jiotsa, A
    Kofane, TC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (06): : 1449 - 1461
  • [27] Conservation laws for cubic-quartic optical solitons with complex Ginzburg-Landau equation having five nonlinear refractive index structures
    Biswas, Anjan
    Kara, Abdul H.
    Khan, Salam
    Yidirim, Yakup
    Mahmood, M. F.
    Alshehri, Hashim M.
    Belic, Milivoj R.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2022, 16 (3-4): : 137 - 141
  • [28] Optical Solitons for Complex Ginzburg-Landau Model with Beta Derivative in Nonlinear Optics
    Yusuf, Abdullahi
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    JOURNAL OF ADVANCED PHYSICS, 2018, 7 (02) : 224 - 229
  • [29] Patterns of Sources and Sinks in the Complex Ginzburg-Landau Equation with Zero Linear Dispersion
    Sherratt, Jonathan A.
    Smith, Matthew J.
    Rademacher, Jens D. M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03): : 883 - 918
  • [30] TEMPORAL SOLITONS OF MODIFIED COMPLEX GINZBURG LANDAU EQUATION
    Shwetanshumala, S.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 3 : 17 - 24