On a Vlasov-Fokker-Planck equation for stored electron beams

被引:0
|
作者
Cesbron, Ludovic [1 ]
Herda, Maxime [2 ]
机构
[1] CY Cergy Paris Univ, Lab Anal Geometrie & Modelisat, CNRS, UMR 8088, 2 Ave Adolphe Chauvin,BP 222, F-95302 Pontoise, France
[2] Univ Lille, Inria, CNRS, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
关键词
Vlasov-Fokker-Planck; Hypocoercivity; Hypoellipticity; Synchrotron radiation; Wakefield; Haissinski; solutions; EQUILIBRIUM; EXISTENCE; APPROXIMATION; UNIQUENESS; SYSTEM; TREND; SPACE;
D O I
10.1016/j.jde.2024.05.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a self-consistent Vlasov-Fokker-Planck equations which describes the longitudinal dynamics of an electron bunch in the storage ring of a synchrotron particle accelerator. We show existence and uniqueness of global classical solutions under physical hypotheses on the initial data. The proof relies on a mild formulation of the equation and hypoelliptic regularization estimates. We also address the problem of the long-time behavior of solutions. We prove the existence of steady states, called Haissinski solutions, given implicitly by a nonlinear integral equation. When the beam current (i.e. the nonlinearity) is small enough, we show uniqueness of steady state and local asymptotic nonlinear stability of solutions in appropriate weighted Lebesgue spaces. The proof is based on hypocoercivity estimates. Finally, we discuss the physical derivation of the equation and its particular asymmetric interaction potential. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:316 / 353
页数:38
相关论文
共 50 条
  • [21] The Linearized Vlasov and Vlasov-Fokker-Planck Equations in a Uniform Magnetic Field
    Bedrossian, Jacob
    Wang, Fei
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) : 552 - 594
  • [22] Integral propagator solvers for Vlasov-Fokker-Planck equations
    Donoso, J. M.
    del Rio, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) : F449 - F456
  • [23] Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov-Fokker-Planck equation
    Bell, AR
    Robinson, APL
    Sherlock, M
    Kingham, RJ
    Rozmus, W
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (03) : R37 - R57
  • [24] Stationary solutions of the Vlasov-Fokker-Planck equation: Existence, characterization and phase-transition
    Duong, M. H.
    Tugaut, J.
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 38 - 45
  • [25] On local existence of the Vlasov-Fokker-Planck equation in a 2D anisotropic space
    Chen, Jing Chun
    He, Cong
    BOUNDARY VALUE PROBLEMS, 2013,
  • [26] On local existence of the Vlasov-Fokker-Planck equation in a 2D anisotropic space
    Jing Chun Chen
    Cong He
    Boundary Value Problems, 2013
  • [27] A code to solve the Vlasov-Fokker-Planck equation applied to particle transport in magnetic turbulence
    Hornsby, W. A.
    Bell, A. R.
    Kingham, R. J.
    Dendy, R. O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (07)
  • [28] GENERIC formalism of a Vlasov-Fokker-Planck equation and connection to large-deviation principles
    Manh Hong Duong
    Peletier, Mark A.
    Zimmer, Johannes
    NONLINEARITY, 2013, 26 (11) : 2951 - 2971
  • [29] Incompressible Navier-Stokes limit from nonlinear Vlasov-Fokker-Planck equation
    Choi, Young-Pil
    Jung, Jinwook
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [30] Vlasov-Fokker-Planck simulations of fast-electron transport with hydrodynamic plasma response
    Kingham, R. J.
    Sherlock, M.
    Ridgers, C. P.
    Evans, R. G.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244