Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering

被引:0
|
作者
Wu, Tingting [1 ,2 ]
Feng, Songhe [1 ,2 ]
Yuan, Jiazheng [3 ]
机构
[1] Beijing Jiaotong Univ, Tangshan Res Inst, Beijing, Peoples R China
[2] Minist Educ, Key Lab Big Data & Artificial Intelligence Transp, Beijing, Peoples R China
[3] Beijing Open Univ, Coll Sci & Technol, Beijing, Peoples R China
基金
北京市自然科学基金;
关键词
GRAPH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete Multiple Kernel Clustering algorithms, which aim to learn a common latent representation from pre-constructed incomplete multiple kernels from the original data, followed by k-means for clustering. They have attracted intensive attention due to their high computational efficiency. However, our observation reveals that the imputation of these approaches for each kernel ignores the influence of other incomplete kernels. In light of this, we present a novel method called Low-Rank Kernel Tensor Learning for Incomplete Multiple Views Clustering (LRKT-IMVC) to address the above issue. Specifically, LRKT-IMVC first introduces the concept of kernel tensor to explore the inter-view correlations, and then the low-rank kernel tensor constraint is used to further capture the consistency information to impute missing kernel elements, thereby improving the quality of clustering. Moreover, we carefully design an alternative optimization method with promising convergence to solve the resulting optimization problem. The proposed method is compared with recent advances in experiments with different missing ratios on seven well-known datasets, demonstrating its effectiveness and the advantages of the proposed interpolation method.
引用
收藏
页码:15952 / 15960
页数:9
相关论文
共 50 条
  • [21] Unified Low-Rank Tensor Learning and Spectral Embedding for Multi-View Subspace Clustering
    Fu, Lele
    Chen, Zhaoliang
    Chen, Yongyong
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4972 - 4985
  • [22] Weighted Low-Rank Tensor Representation for Multi-View Subspace Clustering
    Wang, Shuqin
    Chen, Yongyong
    Zheng, Fangying
    FRONTIERS IN PHYSICS, 2021, 8
  • [23] Deep low-rank tensor embedding for multi-view subspace clustering
    Liu, Zhaohu
    Song, Peng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [24] LOW-RANK AND SPARSE TENSOR REPRESENTATION FOR MULTI-VIEW SUBSPACE CLUSTERING
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Voronin, Viacheslav
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1534 - 1538
  • [25] Multi-view Spectral Clustering Based on Low-rank Tensor Decomposition
    Xiao, Qingjiang
    Du, Shiqiang
    Huang, Yixuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2258 - 2263
  • [26] Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation
    Jia, Yuheng
    Liu, Hui
    Hou, Junhui
    Kwong, Sam
    Zhang, Qingfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (12) : 4784 - 4797
  • [27] Tensor-Based Incomplete Multi-View Clustering With Low-Rank Data Reconstruction and Consistency Guidance
    Hao, Wenyu
    Pang, Shanmin
    Bai, Xiuxiu
    Xue, Jianru
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7156 - 7169
  • [28] Multi-view spectral clustering based on adaptive neighbor learning and low-rank tensor decomposition
    Qingjiang Xiao
    Shiqiang Du
    Baokai Liu
    Yao Yu
    Jinmei Song
    Multimedia Tools and Applications, 2023, 82 : 41159 - 41186
  • [29] Specific and coupled double consistency multi-view subspace clustering with low-rank tensor learning
    Wu, Tong
    Lu, Gui-Fu
    SIGNAL PROCESSING, 2025, 229
  • [30] Multi-view spectral clustering based on adaptive neighbor learning and low-rank tensor decomposition
    Xiao, Qingjiang
    Du, Shiqiang
    Liu, Baokai
    Yu, Yao
    Song, Jinmei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 41159 - 41186