Vision-Based Marker-Less Landing of an Unmanned Aerial System on Moving Ground Vehicle

被引:0
|
作者
Krpec, Blake [1 ,4 ]
Valasek, John [2 ]
Nogar, Stephen [3 ]
机构
[1] Texas A&M Univ, Coll Stn, TX 77843 USA
[2] Texas A&M Univ, Aerosp Engn Dept, Vehicle Syst & Control Lab, College Stn, TX 77843 USA
[3] DEVCOM Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
[4] Southwest Res Inst, Intelligent Syst Div, Robot Auton Sect, San Antonio, TX 78238 USA
来源
关键词
Unmanned Ground Vehicle; Image Processing; Artificial Neural Network; Vision Based Landing; Unmanned Aerial Systems; Flight Control Surfaces; Extended Kalman Filter; Autopilot; Computing and Informatics; Embedded Computing System; TRACKING; UAV;
D O I
10.2514/1.I011282
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Current autonomous unmanned aerial systems (UASs) commonly use vision-based landing solutions that depend upon fiducial markers to localize a static or mobile landing target relative to the UAS. This paper develops and demonstrates an alternative method to fiducial markers with a combination of neural-network-based object detection and camera intrinsic properties to localize an unmanned ground vehicle (UGV) and enable autonomous landing. Implementing this visual approach is challenging given the limited compute power on board the UAS, but it is relevant for autonomous landings on targets for which affixing a fiducial marker a priori is not possible or not practical. The position estimate of the UGV is used to formulate a landing trajectory that is then input to the flight controller. Algorithms are tailored toward low size, weight, and power constraints, as all compute and sensing components weigh less than 100 g. Landings were successfully demonstrated in both simulation and experimentally on a UGV traveling in both a straight line and while turning. Simulation landings were successful at UGV speeds of up to 3.0 m/s, and experimental landings at speeds up to 1.0 m/s.
引用
收藏
页码:735 / 750
页数:16
相关论文
共 50 条
  • [1] Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle
    Morales, Jesus
    Castelo, Isabel
    Serra, Rodrigo
    Lima, Pedro U.
    Basiri, Meysam
    SENSORS, 2023, 23 (02)
  • [2] A Vision-Based Approach for Unmanned Aerial Vehicle Landing
    C. Patruno
    M. Nitti
    A. Petitti
    E. Stella
    T. D’Orazio
    Journal of Intelligent & Robotic Systems, 2019, 95 : 645 - 664
  • [3] Vision-based autonomous landing of an unmanned aerial vehicle
    Saripalli, S
    Montgomery, JF
    Sukhatme, GS
    2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 2799 - 2804
  • [4] Vision-based Autonomous Landing System for Unmanned Aerial Vehicle: A Survey
    Kong, Weiwei
    Zhou, Dianle
    Zhang, Daibing
    Zhang, Jianwei
    PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [5] A Vision-Based Approach for Unmanned Aerial Vehicle Landing
    Patruno, C.
    Nitti, M.
    Petitti, A.
    Stella, E.
    D'Orazio, T.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 95 (02) : 645 - 664
  • [6] Vision-based Autonomous Landing for Rotorcraft Unmanned Aerial Vehicle
    Bu, Chaovan
    Ai, Yunfeng
    Du, Huajun
    2016 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2016, : 77 - 82
  • [7] Fast vision-based autonomous detection of moving cooperative target for unmanned aerial vehicle landing
    Li, Zhaoxi
    Meng, Cai
    Zhou, Fugen
    Ding, Xilun
    Wang, Xuegiang
    Zhang, Huan
    Guo, Pin
    Meng, Xin
    JOURNAL OF FIELD ROBOTICS, 2019, 36 (01) : 34 - 48
  • [8] Vision-Based Tracking and Estimation of Ground Moving Target Using Unmanned Aerial Vehicle
    Zhang, Mingfeng
    Liu, Hugh H. T.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6968 - 6973
  • [9] Vision-based Autonomous Landing of Unmanned Aerial Vehicle on a Motional Unmanned Surface Vessel
    Xu, Zhe-Chong
    Hu, Bin-Bin
    Liu, Bin
    Wang, X. D.
    Zhang, Hai-Tao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6845 - 6850
  • [10] A vision system for landing an unmanned aerial vehicle
    Sharp, CS
    Shakernia, O
    Sastry, SS
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 1720 - 1727