Stock Market Prediction With Transductive Long Short-Term Memory and Social Media Sentiment Analysis

被引:2
|
作者
Peivandizadeh, Ali [1 ]
Hatami, Sima [2 ]
Nakhjavani, Amirhossein [3 ]
Khoshsima, Lida [4 ]
Reza Chalak Qazani, Mohammad [5 ]
Haleem, Muhammad [6 ]
Alizadehsani, Roohallah [7 ]
机构
[1] Univ Houston, Houston, TX 77204 USA
[2] Raja Univ, Qazvin 341451177, Iran
[3] Islamic Azad Univ Mashhad, Comp Engn Software, Mashhad, Iran
[4] Raja Univ, Fac Social Sci, Dept Islamic Econ, Qazvin, Iran
[5] Sohar Univ, Fac Comp & Informat Technol, Sohar 311, Oman
[6] Kardan Univ, Dept Comp Sci, Kabul, Afghanistan
[7] Deakin Univ, Inst Intelligent Syst Res & Innovat IISRI, Waurn Ponds, Vic 3216, Australia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Stock markets; Predictive models; Sentiment analysis; Data models; Long short term memory; Market research; Forecasting; Classification algorithms; Stock market; sentiment analysis; unbalanced classification; proximal policy optimization; transductive long short-term memory;
D O I
10.1109/ACCESS.2024.3399548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an era dominated by digital communication, the vast amounts of data generated from social media and financial markets present unique opportunities and challenges for forecasting stock market prices. This paper proposes an innovative approach that harnesses the power of social media sentiment analysis combined with stock market data to predict stock prices, directly addressing the critical challenges in this domain. A major challenge in sentiment analysis is the uneven distribution of data across different sentiment categories. Traditional models struggle to accurately identify fewer common sentiments (minority class) due to the overwhelming presence of more common sentiments (majority class). To tackle this, we introduce the Off-policy Proximal Policy Optimization (PPO) algorithm, specifically designed to handle class imbalance by adjusting the reward mechanism in the training phase, thus favoring the correct classification of minority class instances. Another challenge is effectively integrating the temporal dynamics of stock prices with sentiment analysis results. Our solution is implementing a Transductive Long Short-Term Memory (TLSTM) model that incorporates sentiment analysis findings with historical stock data. This model excels at recognizing temporal patterns and gives precedence to data points that are temporally closer to the prediction point, enhancing the prediction accuracy. Ablation studies confirm the effectiveness of the Off-policy PPO and TLSTM components on the overall model performance. The proposed approach advances the field of financial analytics by providing a more nuanced understanding of market dynamics but also offers actionable insights for investors and policymakers seeking to navigate the complexities of the stock market with greater precision and confidence.
引用
收藏
页码:87110 / 87130
页数:21
相关论文
共 50 条
  • [41] A comprehensive review on sentiment analysis of social/web media big data for stock market prediction
    Shah, Pratham
    Desai, Kush
    Hada, Mrudani
    Parikh, Parth
    Champaneria, Malav
    Panchal, Dhyani
    Tanna, Mansi
    Shah, Manan
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (06) : 2011 - 2018
  • [42] Harvesting social media sentiment analysis to enhance stock market prediction using deep learning
    Mehta, Pooja
    Pandya, Sharnil
    Kotecha, Ketan
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 21
  • [43] Currency Exchange Rate Prediction with Long Short-Term Memory Networks Based on Attention and News Sentiment Analysis
    Lee, Ching-I
    Chang, Chia-Hui
    Hwang, Feng-Nan
    2019 INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2019,
  • [44] Deep learning framework for stock price prediction using long short-term memory
    Chandar S.K.
    Soft Comput., 17-18 (10557-10567): : 10557 - 10567
  • [45] Stock Price Prediction Using Time Convolution Long Short-Term Memory Network
    Zhan, Xukuan
    Li, Yuhua
    Li, Ruixuan
    Gu, Xiwu
    Habimana, Olivier
    Wang, Haozhao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I, 2018, 11061 : 461 - 468
  • [46] Evolutionary Framework with Bidirectional Long Short-Term Memory Network for Stock Price Prediction
    Zheng, Hongying
    Wang, Hongyu
    Chen, Jianyong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [47] Deep Bi-directional Long Short-Term Memory Neural Networks for Sentiment Analysis of Social Data
    Ngoc Khuong Nguyen
    Anh-Cuong Le
    Hong Thai Pham
    INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, IUKM 2016, 2016, 9978 : 255 - 268
  • [48] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [49] FORECASTING STOCK MARKET INDEX BASED ON PATTERN-DRIVEN LONG SHORT-TERM MEMORY
    Song, Donghwan
    Busogi, Moise
    Baek, Adrian M. Chung
    Kim, Namhun
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2020, 54 (03): : 25 - 41
  • [50] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)