Low-Density Solvent-Dispersive Liquid-Liquid Microextraction with Phase Separation by Solidification of the Aqueous Phase for Analysis of Acrylamide in Vegetable and Fruit Chips by Gas Chromatography-Mass Spectrometry

被引:1
|
作者
Khongsiri, Chookiat [1 ]
Ratsamisomsi, Anuwat [2 ]
Wilairat, Prapin [3 ]
Tiyapongpattana, Warawut [1 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Chem, Khlong Luang 12120, Pathumthani, Thailand
[2] Thammasat Univ, Ctr Sci Equipment Adv Res, Off Adv Sci & Technol, Khlong Luang 12120, Pathumthani, Thailand
[3] Mahidol Univ, Analyt Sci & Natl Doping Test Inst, Bangkok 10400, Thailand
来源
ACS FOOD SCIENCE & TECHNOLOGY | 2024年 / 4卷 / 08期
关键词
acrylamide; bromination; anisole; low-density solvent-based dispersive liquid-liquid microextraction; solidification of the aqueous phase; processed chip; PROCESSED FOODS; PRECONCENTRATION; SAMPLES; SNACKS;
D O I
10.1021/acsfoodscitech.4c00076
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Vegetable and fruit chips may carry a risk of containing trace amounts of acrylamide, which is a probable carcinogen. Hence, this study presents a sensitive method for the identification and quantification of acrylamide in chips. The finely pulverized sample is mixed with ultrapure water and defatted with hexane. The aqueous extract is then brominated, and the derivatized acrylamide is extracted and preconcentrated using a small volume of low-density anisole through dispersive liquid-liquid microextraction. The aqueous phase is subjected to freezing, and the organic layer is separated by decanting. The organic phase is subsequently treated with triethylamine before being analyzed using gas chromatography-mass spectrometry. The method has a limit of detection of 0.2 mu g/L, a relative standard deviation of less than 7%, and recoveries of spiked samples ranging from 84 to 102%. The method was applied to determine the acrylamide content in potato, taro, durian, jackfruit, and banana chips. The values ranged from 41 to 2940 mu g/kg. Banana chips contained the lowest acrylamide content, while jackfruit chips had the highest.
引用
收藏
页码:1834 / 1843
页数:10
相关论文
共 50 条
  • [21] Determination of Polybrominated Diphenyl Ethers in Baiyang Lake by Dispersive Liquid-Liquid Microextraction and Gas Chromatography/Gas Chromatography-Mass Spectrometry
    Liu Peng-Yan
    Gao Li
    Zhao Ya-Xian
    Shen Jie
    Qin Zhan-Fen
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2010, 38 (04) : 498 - 502
  • [22] Solid-Phase Extraction Combined with Dispersive Liquid-Liquid Microextraction for the Simultaneous Determination of Deltamethrin and Permethrin in Honey by Gas Chromatography-Mass Spectrometry
    Shirani, Mahboube
    Haddadi, Hedayat
    Rezaee, Mohammad
    Semnani, Abolfazl
    Habibollahi, Saeed
    FOOD ANALYTICAL METHODS, 2016, 9 (09) : 2613 - 2620
  • [23] In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides
    Cacho, J., I
    Campillo, N.
    Vinas, P.
    Hernandez-Cordoba, M.
    JOURNAL OF CHROMATOGRAPHY A, 2018, 1559 : 95 - 101
  • [24] Determination of Phthalates in Milk by Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry
    Tuncel, Semra G.
    Senlik, Damla
    ANALYTICAL LETTERS, 2016, 49 (09) : 1334 - 1343
  • [25] Dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of pesticide residues in nutraceutical drops
    Szarka, Agnesa
    Turkova, Dominika
    Hrouzkova, Svetlana
    JOURNAL OF CHROMATOGRAPHY A, 2018, 1570 : 126 - 134
  • [26] Determination of organochlorine pesticides in water samples by dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry
    Cortada, Carol
    Vidal, Lorena
    Pastor, Raul
    Santiago, Noemi
    Canals, Antonio
    ANALYTICA CHIMICA ACTA, 2009, 649 (02) : 218 - 221
  • [27] Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection
    Farina, Laura
    Boido, Eduardo
    Carrau, Francisco
    Dellacassa, Eduardo
    JOURNAL OF CHROMATOGRAPHY A, 2007, 1157 (1-2) : 46 - 50
  • [28] Temperature sensitive polymer-dispersive liquid-liquid microextraction with gas chromatography-mass spectrometry for the determination of phenols
    Chen, Xiaomei
    Guo, Zhian
    Wang, Yi
    Liu, Yufeng
    Xu, Yidong
    Liu, Jie
    Li, Zhiqiang
    Zhao, Jingchan
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1592 : 183 - 187
  • [29] Simultaneous determination of seven preservatives in food by dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry
    Ding, Mingzhen
    Liu, Weixi
    Peng, Jing
    Liu, Xiuhong
    Tang, Yu
    FOOD CHEMISTRY, 2018, 269 : 187 - 192
  • [30] Dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction for gas chromatography with mass spectrometry determination of polycyclic aromatic hydrocarbons in aqueous matrices
    Hassan, Farah Wahidah Mohd
    Raoov, Muggundha
    Kamaruzaman, Sazlinda
    Sanagi, Mohd Marsin
    Yoshida, Nao
    Hirota, Yuichiro
    Nishiyama, Norikazu
    Yahaya, Noorfatimah
    JOURNAL OF SEPARATION SCIENCE, 2018, 41 (19) : 3751 - 3763