Convolutional neural networks for signal detection in real LIGO data

被引:4
|
作者
Zelenka, Ondrej [1 ,2 ,3 ]
Bruegmann, Bernd [1 ,2 ]
Ohme, Frank [4 ,5 ]
机构
[1] Friedrich Schiller Univ Jena, D-07743 Jena, Germany
[2] Michael Stifel Ctr Jena, D-07743 Jena, Germany
[3] Czech Acad Sci, Astron Inst, Bocni II 1401-1a, CZ-14100 Prague, Czech Republic
[4] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[5] Leibniz Univ Hannover, D-30167 Hannover, Germany
基金
新加坡国家研究基金会; 日本学术振兴会;
关键词
2ND OBSERVING RUNS; BAYESIAN-INFERENCE; 1ST; MERGERS; VIRGO; BILBY;
D O I
10.1103/PhysRevD.110.024024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Searching the data of gravitational-wave detectors for signals from compact binary mergers is a computationally demanding task. Recently, machine-learning algorithms have been proposed to address current and future challenges. However, the results of these publications often differ greatly due to differing choices in the evaluation procedure. The Machine Learning Gravitational-Wave Search Challenge was organized to resolve these issues and produce a unified framework for machine-learning search evaluation. Six teams submitted contributions, four of which are based on machine-learning methods, and two are state-of-the-art production analyses. This paper describes the submission from the team TPI FSU Jena and its updated variant. We also apply our algorithm to real O3b data and recover the relevant events of the GWTC-3 catalog.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Detection of Vehicles in Multisensor Data via Multibranch Convolutional Neural Networks
    Schilling, Hendrik
    Bulatov, Dimitri
    Niessner, Robin
    Middelmann, Wolfgang
    Soergel, Uwe
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4299 - 4316
  • [22] Pool detection from smart metering data with convolutional neural networks
    Ferner C.
    Eibl G.
    Unterweger A.
    Burkhart S.
    Wegenkittl S.
    Energy Informatics, 2019, 2 (Suppl 1)
  • [23] Convolutional neural networks-based crack detection for real concrete surface
    Li, Shengyuan
    Zhao, Xuefeng
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2018, 2018, 10598
  • [24] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    PLOS ONE, 2019, 14 (03):
  • [25] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [26] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [27] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [28] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [29] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [30] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +