Cactus: A user-friendly and reproducible ATAC-Seq and mRNA-Seq analysis pipeline for data preprocessing, differential analysis, and enrichment analysis

被引:0
|
作者
Salignon, Jerome [1 ]
Millan-Arino, Lluis [1 ]
Garcia, Maxime U. [2 ,3 ]
Riedel, Christian G. [1 ]
机构
[1] Karolinska Inst, Dept Biosci & Nutr, Blickagangen 16, S-14152 Huddinge, Sweden
[2] Natl Genom Infrastruct Sci Life Lab, Tomtebodavagen 23A, SE-17165 Solna, Sweden
[3] Karolinska Inst, Dept Oncol Pathol, Bioclinicum J6-20,Visionsgatan 4, S-17164 Solna, Sweden
关键词
Pipeline; ATAC-Seq; mRNA-Seq; User-friendly; Reproducible; Enrichment analysis; Data integration; CIS-REGULATORY ELEMENTS; CAENORHABDITIS-ELEGANS; DNA ELEMENTS; CHROMATIN; PLURIPOTENCY; ENCYCLOPEDIA; SIGNATURE; CIRCUITS; PACKAGE; BINDING;
D O I
10.1016/j.ygeno.2024.110858
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ever decreasing cost of Next-Generation Sequencing coupled with the emergence of efficient and reproducible analysis pipelines has rendered genomic methods more accessible. However, downstream analyses are basic or missing in most workflows, creating a significant barrier for non-bioinformaticians. To help close this gap, we developed Cactus, an end-to-end pipeline for analyzing ATAC-Seq and mRNA-Seq data, either separately or jointly. Its Nextflow-, container-, and virtual environment-based architecture ensures efficient and reproducible analyses. Cactus preprocesses raw reads, conducts differential analyses between conditions, and performs enrichment analyses in various databases, including DNA-binding motifs, ChIP-Seq binding sites, chromatin states, and ontologies. We demonstrate the utility of Cactus in a multi-modal and multi-species case study as well as by showcasing its unique capabilities as compared to other ATAC-Seq pipelines. In conclusion, Cactus can assist researchers in gaining comprehensive insights from chromatin accessibility and gene expression data in a quick, user-friendly, and reproducible manner.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis
    Feng Yan
    David R. Powell
    David J. Curtis
    Nicholas C. Wong
    Genome Biology, 21
  • [22] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Huidong Chen
    Caleb Lareau
    Tommaso Andreani
    Michael E. Vinyard
    Sara P. Garcia
    Kendell Clement
    Miguel A. Andrade-Navarro
    Jason D. Buenrostro
    Luca Pinello
    Genome Biology, 20
  • [23] Homology cluster differential expression analysis for interspecies mRNA-Seq experiments
    Gelfond, Jonathan A.
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    Sun, Wei
    Lewis, Kaitlyn
    Kinahan, Sean
    Hibbs, Matthew
    Buffenstein, Rochelle
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2015, 14 (06) : 507 - 516
  • [24] ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation
    Jake J. Reske
    Mike R. Wilson
    Ronald L. Chandler
    Epigenetics & Chromatin, 13
  • [25] ARMOR: An Automated Reproducible MOdular Workflow for Preprocessing and Differential Analysis of RNA-seq Data
    Orjuela, Stephany
    Huang, Ruizhu
    Hembach, Katharina M.
    Robinson, Mark D.
    Soneson, Charlotte
    G3-GENES GENOMES GENETICS, 2019, 9 (07): : 2089 - 2096
  • [26] ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation
    Reske, Jake J.
    Wilson, Mike R.
    Chandler, Ronald L.
    EPIGENETICS & CHROMATIN, 2020, 13 (01)
  • [27] An Integrative ATAC-Seq and RNA-Seq Analysis of the Endometrial Tissues of Meishan and Duroc Pigs
    Zhang, Han
    Liu, Zhexi
    Wang, Ji
    Zeng, Tong
    Ai, Xiaohua
    Wu, Keliang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [28] Integrated analysis of ATAC-seq and RNA-seq reveals the transcriptional regulation network in SLE
    Wu, Jiali
    Li, Yuwei
    Feng, Delong
    Yu, Yaqin
    Long, Haojun
    Hu, Zhi
    Lu, Qianjin
    Zhao, Ming
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 116
  • [29] Bioinformatic Analysis of Clear Cell Renal Carcinoma via ATAC-Seq and RNA-Seq
    Chang, Feng
    Chen, Zhenqiong
    Xu, Caixia
    Liu, Hailei
    Han, Pengyong
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 374 - 382
  • [30] scPipe: an extended preprocessing pipeline for comprehensive single-cell ATAC-Seq data integration in R/Bioconductor
    Amarasinghe, Shanika L.
    Yang, Phil
    Voogd, Oliver
    Yang, Haoyu
    Du, Mei R. M.
    Su, Shian
    Brown, Daniel, V
    Jabbari, Jafar S.
    Bowden, Rory
    Ritchie, Matthew E.
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (04)