Cactus: A user-friendly and reproducible ATAC-Seq and mRNA-Seq analysis pipeline for data preprocessing, differential analysis, and enrichment analysis

被引:0
|
作者
Salignon, Jerome [1 ]
Millan-Arino, Lluis [1 ]
Garcia, Maxime U. [2 ,3 ]
Riedel, Christian G. [1 ]
机构
[1] Karolinska Inst, Dept Biosci & Nutr, Blickagangen 16, S-14152 Huddinge, Sweden
[2] Natl Genom Infrastruct Sci Life Lab, Tomtebodavagen 23A, SE-17165 Solna, Sweden
[3] Karolinska Inst, Dept Oncol Pathol, Bioclinicum J6-20,Visionsgatan 4, S-17164 Solna, Sweden
关键词
Pipeline; ATAC-Seq; mRNA-Seq; User-friendly; Reproducible; Enrichment analysis; Data integration; CIS-REGULATORY ELEMENTS; CAENORHABDITIS-ELEGANS; DNA ELEMENTS; CHROMATIN; PLURIPOTENCY; ENCYCLOPEDIA; SIGNATURE; CIRCUITS; PACKAGE; BINDING;
D O I
10.1016/j.ygeno.2024.110858
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ever decreasing cost of Next-Generation Sequencing coupled with the emergence of efficient and reproducible analysis pipelines has rendered genomic methods more accessible. However, downstream analyses are basic or missing in most workflows, creating a significant barrier for non-bioinformaticians. To help close this gap, we developed Cactus, an end-to-end pipeline for analyzing ATAC-Seq and mRNA-Seq data, either separately or jointly. Its Nextflow-, container-, and virtual environment-based architecture ensures efficient and reproducible analyses. Cactus preprocesses raw reads, conducts differential analyses between conditions, and performs enrichment analyses in various databases, including DNA-binding motifs, ChIP-Seq binding sites, chromatin states, and ontologies. We demonstrate the utility of Cactus in a multi-modal and multi-species case study as well as by showcasing its unique capabilities as compared to other ATAC-Seq pipelines. In conclusion, Cactus can assist researchers in gaining comprehensive insights from chromatin accessibility and gene expression data in a quick, user-friendly, and reproducible manner.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Comparison of differential accessibility analysis strategies for ATAC-seq data
    Paul Gontarz
    Shuhua Fu
    Xiaoyun Xing
    Shaopeng Liu
    Benpeng Miao
    Viktoriia Bazylianska
    Akhil Sharma
    Pamela Madden
    Kitra Cates
    Andrew Yoo
    Anna Moszczynska
    Ting Wang
    Bo Zhang
    Scientific Reports, 10
  • [2] Comparison of differential accessibility analysis strategies for ATAC-seq data
    Gontarz, Paul
    Fu, Shuhua
    Xing, Xiaoyun
    Liu, Shaopeng
    Miao, Benpeng
    Bazylianska, Viktoriia
    Sharma, Akhil
    Madden, Pamela
    Cates, Kitra
    Yoo, Andrew
    Moszczynska, Anna
    Wang, Ting
    Zhang, Bo
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] PEPATAC: an optimized pipeline for ATAC-seq data analysis with serial alignments
    Smith, Jason P.
    Corces, M. Ryan
    Xu, Jin
    Reuter, Vincent P.
    Chang, Howard Y.
    Sheffield, Nathan C.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (04)
  • [4] GUAVA: A Graphical User Interface for the Analysis and Visualization of ATAC-seq Data
    Divate, Mayur
    Cheung, Edwin
    FRONTIERS IN GENETICS, 2018, 9
  • [5] MMF-ATAC: A User-friendly Web Server for Multiple Motifs Finding on ATAC-seq Data
    Wang, Yan
    Wu, Xiaotian
    Da, Haoming
    Zhang, Shuangquan
    PROCEEDINGS OF 2024 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND INTELLIGENT COMPUTING, BIC 2024, 2024, : 275 - 279
  • [6] esATAC: an easy-to-use systematic pipeline for ATAC-seq data analysis
    Wei, Zheng
    Zhang, Wei
    Fang, Huan
    Li, Yanda
    Wang, Xiaowo
    BIOINFORMATICS, 2018, 34 (15) : 2664 - 2665
  • [7] CoBRA: Containerized Bioinformatics Workflow for Reproducible ChIP/ATAC-seq Analysis
    Qiu, Xintao
    Feit, Avery S.
    Feiglin, Ariel
    Xie, Yingtian
    Kesten, Nikolas
    Taing, Len
    Perkins, Joseph
    Gu, Shengqing
    Li, Yihao
    Cejas, Paloma
    Zhou, Ningxuan
    Jeselsohn, Rinath
    Brown, Myles
    Liu, X. Shirley
    Long, Henry W.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (04) : 652 - 661
  • [8] CoBRA: Containerized Bioinformatics Workflow for Reproducible Ch IP/ATAC-seq Analysis
    Xintao Qiu
    Avery SFeit
    Ariel Feiglin
    Yingtian Xie
    Nikolas Kesten
    Len Taing
    Joseph Perkins
    Shengqing Gu
    Yihao Li
    Paloma Cejas
    Ningxuan Zhou
    Rinath Jeselsohn
    Myles Brown
    XShirley Liu
    Henry WLong
    Genomics,Proteomics & Bioinformatics, 2021, (04) : 652 - 661
  • [9] CoBRA: Containerized Bioinformatics Workflow for Reproducible Ch IP/ATAC-seq Analysis
    Xintao Qiu
    Avery S.Feit
    Ariel Feiglin
    Yingtian Xie
    Nikolas Kesten
    Len Taing
    Joseph Perkins
    Shengqing Gu
    Yihao Li
    Paloma Cejas
    Ningxuan Zhou
    Rinath Jeselsohn
    Myles Brown
    X.Shirley Liu
    Henry W.Long
    Genomics,Proteomics & Bioinformatics, 2021, 19 (04) : 652 - 661
  • [10] scATACpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell ATAC-seq data
    Hu, Kai
    Liu, Haibo
    Lawson, Nathan D.
    Zhu, Lihua Julie
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10