Token Imbalance Adaptation for Radiology Report Generation

被引:0
|
作者
Wu, Yuexin [1 ]
Huang, I-Chan [2 ]
Huang, Xiaolei [1 ]
机构
[1] Univ Memphis, Memphis, TN 38152 USA
[2] St Jude Childrens Res Hosp, Memphis, TN USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imbalanced token distributions naturally exist in text documents, leading neural language models to overfit on frequent tokens. The token imbalance may dampen the robustness of radiology report generators, as complex medical terms appear less frequently but reflect more medical information. In this study, we demonstrate how current state-of-the-art models fail to generate infrequent tokens on two standard benchmark datasets (IU X-RAY and MIMIC-CXR) of radiology report generation. To solve the challenge, we propose the Token Imbalance Adapter (TIMER), aiming to improve generation robustness on infrequent tokens. The model automatically leverages token imbalance by an unlikelihood loss and dynamically optimizes generation processes to augment infrequent tokens. We compare our approach with multiple state-of-the-art methods on the two benchmarks. Experiments demonstrate the effectiveness of our approach in enhancing model robustness overall and infrequent tokens. Our ablation analysis shows that our reinforcement learning method has a major effect in adapting token imbalance for radiology report generation.
引用
收藏
页码:72 / 85
页数:14
相关论文
共 50 条
  • [21] Reinforced Cross-modal Alignment for Radiology Report Generation
    Qin, Han
    Song, Yan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 448 - 458
  • [22] Multimodal Recurrent Model with Attention for Automated Radiology Report Generation
    Xue, Yuan
    Xu, Tao
    Long, L. Rodney
    Xue, Zhiyun
    Antani, Sameer
    Thoma, George R.
    Huang, Xiaolei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 457 - 466
  • [23] Visual Recalibration and Gating Enhancement Network for Radiology Report Generation
    Hou, Xiaodi
    Sang, Guoming
    Liu, Zhi
    Li, Xiaobo
    Zhang, Yijia
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2024, 31 (06) : 486 - 497
  • [24] An Inclusive Task-Aware Framework for Radiology Report Generation
    Wang, Lin
    Ning, Munan
    Lu, Donghuan
    Wei, Dong
    Zheng, Yefeng
    Chen, Jie
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 568 - 577
  • [25] An Organ-Aware Diagnosis Framework for Radiology Report Generation
    Li, Shiyu
    Qiao, Pengchong
    Wang, Lin
    Ning, Munan
    Yuan, Li
    Zheng, Yefeng
    Chen, Jie
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (12) : 4253 - 4265
  • [26] Intensive vision-guided network for radiology report generation
    Zheng, Fudan
    Li, Mengfei
    Wang, Ying
    Yu, Weijiang
    Wang, Ruixuan
    Chen, Zhiguang
    Xiao, Nong
    Lu, Yutong
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (04):
  • [27] Interactive and Explainable Region-guided Radiology Report Generation
    Tanida, Tim
    Muller, Philip
    Kaissis, Georgios
    Rueckert, Daniel
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7433 - 7442
  • [28] Trust it or not: Confidence-guided automatic radiology report generation
    Wang, Yixin
    Lin, Zihao
    Xu, Zhe
    Dong, Haoyu
    Luo, Jie
    Tian, Jiang
    Shi, Zhongchao
    Huang, Lifu
    Zhang, Yang
    Fan, Jianping
    He, Zhiqiang
    NEUROCOMPUTING, 2024, 578
  • [29] Medical Report Generation through Radiology Images: An Overview.
    Prieto-Ordaz, Olanda
    Ramirez-Alonso, Graciela
    Montes-Y-Gomez, Manuel
    Lopez-Santillan, Roberto
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (06) : 986 - 999
  • [30] Exploring and Distilling Posterior and Prior Knowledge for Radiology Report Generation
    Liu, Fenglin
    Wu, Xian
    Ge, Shen
    Fan, Wei
    Zou, Yuexian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13748 - 13757