Enhanced spatial-temporal dynamics in pose forecasting through multi-graph convolution networks

被引:0
|
作者
Ren, Hongwei [1 ]
Zhang, Xiangran [1 ]
Shi, Yuhong [1 ]
Liang, Kewei [2 ]
机构
[1] Zhejiang Univ, Polytech Inst, Shixiang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Yuhangtang Rd, Hangzhou 310015, Zhejiang, Peoples R China
关键词
Graph convolutional network; Pose prediction; Attention mechanism; MOTION;
D O I
10.1007/s13042-024-02254-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, there has been a growing interest in predicting human motion, which involves forecasting future body poses based on observed pose sequences. This task is complex due to modeling spatial and temporal relationships. Autoregressive models, including recurrent neural networks (RNNs) and their variants, as well as transformer networks, are commonly used for addressing this challenge. However, autoregressive models have several serious drawbacks, such as vanishing or exploding gradients. Other researchers have attempted to solve the communication problem in the spatial dimension by integrating graph convolutional networks (GCNs) and long short-term memory (LSTM) or convolutional neural network (CNN) models. These approaches process temporal and spatial information separately and fuse them to extract features, whereas this sequential processing hampers the model's ability to capture spatiotemporal information and perform feature extraction simultaneously. To address this in human pose forecasting, we propose a novel approach called the multi-graph convolution network (MGCN). By introducing an augmented graph for pose sequences, our model captures spatial and temporal information in one step only using GCN. Multiple frames provide multiple parts, which are joined together in a unified graph instance. Furthermore, our model investigates the impact of natural structure and sequence-aware attention. In the experimental evaluation of the large-scale benchmark datasets (Human3.6M, AMSS, and 3DPW), MGCN outperforms the state-of-the-art methods in human pose prediction.
引用
收藏
页码:5453 / 5467
页数:15
相关论文
共 50 条
  • [31] PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
    Shin, Yuyol
    Yoon, Yoonjin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7633 - 7644
  • [32] Adaptive spatial-temporal graph attention networks for traffic flow forecasting
    Kong, Xiangyuan
    Zhang, Jian
    Wei, Xiang
    Xing, Weiwei
    Lu, Wei
    APPLIED INTELLIGENCE, 2022, 52 (04) : 4300 - 4316
  • [33] STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow Forecasting
    Kong, Xiangyuan
    Xing, Weiwei
    Wei, Xiang
    Bao, Peng
    Zhang, Jian
    Lu, Wei
    IEEE ACCESS, 2020, 8 : 134363 - 134372
  • [34] Topological Elastic Graph Convolutional Networks for Spatial-Temporal Sequence Forecasting
    Wang, Yiwen
    Xu, Meiling
    Tang, Lixin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [35] Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting
    Guo, Shengnan
    Lin, Youfang
    Wan, Huaiyu
    Li, Xiucheng
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5415 - 5428
  • [36] Decoupled Graph Spatial-Temporal Transformer Networks for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [37] Adaptive spatial-temporal graph attention networks for traffic flow forecasting
    Xiangyuan Kong
    Jian Zhang
    Xiang Wei
    Weiwei Xing
    Wei Lu
    Applied Intelligence, 2022, 52 : 4300 - 4316
  • [38] Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting
    Li, Mengzhang
    Zhu, Zhanxing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4189 - 4196
  • [39] Trajectory prediction of cyclist based on spatial-temporal multi-graph network in crowded scenarios
    Li, Meng
    Chen, Tao
    Du, Hao
    ELECTRONICS LETTERS, 2022, 58 (03) : 97 - 99
  • [40] Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Liu, Yingru
    Xie, Kun
    He, Shaoyao
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 890 - 897