Enhanced spatial-temporal dynamics in pose forecasting through multi-graph convolution networks

被引:0
|
作者
Ren, Hongwei [1 ]
Zhang, Xiangran [1 ]
Shi, Yuhong [1 ]
Liang, Kewei [2 ]
机构
[1] Zhejiang Univ, Polytech Inst, Shixiang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Yuhangtang Rd, Hangzhou 310015, Zhejiang, Peoples R China
关键词
Graph convolutional network; Pose prediction; Attention mechanism; MOTION;
D O I
10.1007/s13042-024-02254-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, there has been a growing interest in predicting human motion, which involves forecasting future body poses based on observed pose sequences. This task is complex due to modeling spatial and temporal relationships. Autoregressive models, including recurrent neural networks (RNNs) and their variants, as well as transformer networks, are commonly used for addressing this challenge. However, autoregressive models have several serious drawbacks, such as vanishing or exploding gradients. Other researchers have attempted to solve the communication problem in the spatial dimension by integrating graph convolutional networks (GCNs) and long short-term memory (LSTM) or convolutional neural network (CNN) models. These approaches process temporal and spatial information separately and fuse them to extract features, whereas this sequential processing hampers the model's ability to capture spatiotemporal information and perform feature extraction simultaneously. To address this in human pose forecasting, we propose a novel approach called the multi-graph convolution network (MGCN). By introducing an augmented graph for pose sequences, our model captures spatial and temporal information in one step only using GCN. Multiple frames provide multiple parts, which are joined together in a unified graph instance. Furthermore, our model investigates the impact of natural structure and sequence-aware attention. In the experimental evaluation of the large-scale benchmark datasets (Human3.6M, AMSS, and 3DPW), MGCN outperforms the state-of-the-art methods in human pose prediction.
引用
收藏
页码:5453 / 5467
页数:15
相关论文
共 50 条
  • [1] Spatial-Temporal Residual Multi-Graph Convolution Network for Traffic Forecasting
    Xi'an Jiaotong University, School of Computer Science and Technology, Xi'an, China
    不详
    IEEE Int. Conf. Data Sci. Adv. Anal., DSAA - Proc., 2023,
  • [2] Multi-component Spatial-temporal Graph Convolution Networks for Traffic Flow Forecasting
    Feng N.
    Guo S.-N.
    Song C.
    Zhu Q.-C.
    Wan H.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (03): : 759 - 769
  • [3] Multi-Attention Based Spatial-Temporal Graph Convolution Networks for Traffic Flow Forecasting
    Hu, Jun
    Chen, Liyin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs
    Li J.
    Li Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (07): : 1366 - 1376
  • [5] MTGCN: Multi-graph Fusion Based Temporal-Spatial Convolution for Traffic Flow Forecasting
    Li, Chenghao
    Zhao, Linlin
    Zhang, Zhenguo
    2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence, CCAI 2023, 2023, : 75 - 80
  • [6] Traffic flow forecasting based on lightweight spatial-temporal graph convolution networks model
    He, Wenwu
    Pei, Boyu
    Mao, Guojun
    Chen, Weiya
    Journal of Railway Science and Engineering, 2022, 19 (09): : 2552 - 2562
  • [7] Spatial-Temporal Position-Aware Graph Convolution Networks for Traffic Flow Forecasting
    Zhao, Yiji
    Lin, Youfang
    Wen, Haomin
    Wei, Tonglong
    Jin, Xiyuan
    Wan, Huaiyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8650 - 8666
  • [8] Spatial-temporal clustering enhanced multi-graph convolutional network for traffic flow prediction
    Bao, Yinxin
    Shen, Qinqin
    Cao, Yang
    Shi, Quan
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [9] A Multi-Graph Attention Spatial-Temporal Graph Convolutional Network (MGA-STGCN) for AHP Risk Forecasting
    Tian, A. Tian
    Xue, B. Yingjie
    Han, C. Qingwen
    Zeng, D. Lingqiu
    Zhou, E. Xinyu
    Proceedings of 2023 8th IEEE International Conference on Network Intelligence and Digital Content, IC-NIDC 2023, 2023, : 362 - 368
  • [10] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    MATHEMATICS, 2022, 10 (09)