Assessment of properties of bamboo fiber and EPDM reinforced polypropylene microcellular foam composites

被引:5
|
作者
Guo, Wei [1 ,2 ,3 ,4 ,5 ]
Zhao, Jialong [1 ,2 ,5 ]
Zhao, Feng [1 ,2 ,5 ]
Feng, Tao [1 ,2 ,5 ]
Liu, Lian [1 ,2 ,5 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components Te, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Hubei Res Ctr New Energy & Intelligent Connected V, Wuhan 430070, Peoples R China
[4] Wuhan Univ Technol, Inst Adv Mat & Mfg Technol, Wuhan 430070, Peoples R China
[5] Wuhan Univ Technol, Sch Automot Engn, Wuhan 430070, Peoples R China
关键词
Bamboo fiber; Polypropylene composites; Physical foaming injection; MECHANICAL-PROPERTIES; BIOCOMPOSITES; MORPHOLOGY; ANISOTROPY; RUBBER;
D O I
10.1016/j.polymer.2024.127142
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Plant fiber reinforced composite has broad industrial application prospects, and has the trend of gradually replacing traditional materials, but there are also problems such as not obvious advantages of lightweight and poor toughness. In this paper, alkali modified bamboo fiber reinforced polypropylene (BF/PP) composite was prepared by supercritical foam injection molding. The effect of fiber content on the formability of BF/PP composite was studied. Furthermore, the strength and toughness of BF/PP composites were balanced by blending Ethylene Propylene Diene Monomer (EPDM) elastomers with different content under the optimal fiber content of 20 %. The physical and mechanical properties of BF/PP composites were studied. The results showed that the addition of bamboo fiber improved the structure of the cell and significantly enhanced the mechanical properties of the composite. The addition of elastomer EPDM effectively alleviates the problem of poor toughness and brittle fracture of bamboo fiber composites. The foam material density decreased by about 15 %, the addition of bamboo fiber brought the maximum 57.37 % tensile strength and 79.96 % flexural strength improvement to the polypropylene matrix. When the EPDM content was 10 %, the foaming effect of the material was the best, and the impact toughness increased by 34.42 % compared with pure polypropylene. This study expands the application prospect of the bamboo fiber reinforced polypropylene microcellular foam materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites
    Zhang, Kai
    Wang, Fangxin
    Liang, Wenyan
    Wang, Zhenqing
    Duan, Zhiwei
    Yang, Bin
    POLYMERS, 2018, 10 (06)
  • [32] Properties of Bamboo Fiber Reinforced Cornstarch-based Composites
    Zeng, Guangsheng
    Lin, Ruizhen
    Meng, Cong
    Chen, Lei
    PACKAGING SCIENCE AND TECHNOLOGY, 2012, 200 : 237 - 242
  • [33] Foam injection molding of glass fiber reinforced polypropylene composites with laminate skins
    Kasemphaibulsuk, Pibulchai
    Holzner, Marcel
    Kuboki, Takashi
    Hrymak, Andrew
    POLYMER COMPOSITES, 2018, 39 (12) : 4322 - 4332
  • [34] Preparation and properties of glass fiber/polypropylene fiber reinforced thermoplastic composites
    Dong W.
    Fangzhi Xuebao/Journal of Textile Research, 2019, 40 (03): : 71 - 75
  • [35] Study on the physico-mechanical and degradation properties of gamma radiated bamboo fiber-reinforced polypropylene composites
    Dey, Kamol
    Khan, Ruhul A.
    Chowdhury, A. M. Sarwaruddin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [36] Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing
    Long, Haibo
    Wu, Zhiqiang
    Dong, Qianqian
    Shen, Yuting
    Zhou, Wuyi
    Luo, Ying
    Zhang, Chaoqun
    Dong, Xianming
    POLYMER ENGINEERING AND SCIENCE, 2019, 59 (s2): : E247 - E260
  • [37] Effect of compression parameters on stress relaxation behavior of bamboo fiber reinforced polypropylene composites
    Jiang, Taijun
    Hu, Can
    Zeng, Guangsheng
    POLYMER COMPOSITES, 2022, 43 (05) : 2584 - 2592
  • [38] Tensile and impact properties of pulverized oil palm fiber reinforced polypropylene composites : A comparison study with wood fiber reinforced polypropylene composites
    Nordin, M. N. A.
    Sakamoto, K.
    Azhari, H.
    Goda, K.
    Okamoto, M.
    Ito, H.
    Endo, T.
    JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2018, 12 (04) : 4191 - 4202
  • [39] The influence of bamboo fiber content on the non-isothermal crystallization kinetics of bamboo fiber-reinforced polypropylene composites (BPCs)
    Hsu, Chin-Yin
    Yang, Teng-Chun
    Wu, Tung-Lin
    Hung, Ke-Chang
    Wu, Jyh-Horng
    HOLZFORSCHUNG, 2018, 72 (04) : 329 - 336
  • [40] Coir Fiber Reinforced Polypropylene Composites: Physical and Mechanical Properties
    Haque, Md. Mominul
    Islam, Md. Nazrul
    Huque, Md. Monimul
    Hasan, Mahbub
    Islam, Md. Saiful
    Islam, Md. Sakinul
    ADVANCED COMPOSITE MATERIALS, 2010, 19 (01) : 91 - 106