Deep Learning Approaches for Medical Image Analysis and Diagnosis

被引:5
|
作者
Thakur, Gopal Kumar [1 ]
Thakur, Abhishek [1 ]
Kulkarni, Shridhar [1 ]
Khan, Naseebia [1 ]
Khan, Shahnawaz [2 ]
机构
[1] Harrisburg Univ Sci & Technol, Dept Data Sci, Harrisburg, PA 17101 USA
[2] Bundelkhand Univ, Dept Comp Applicat, Jhansi, India
关键词
clinical practice; medical imaging; reliability; machine learning; artificial intelligence;
D O I
10.7759/cureus.59507
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In addition to enhancing diagnostic accuracy, deep learning techniques offer the potential to streamline workflows, reduce interpretation time, and ultimately improve patient outcomes. The scalability and adaptability of deep learning algorithms enable their deployment across diverse clinical settings, ranging from radiology departments to point -of -care facilities. Furthermore, ongoing research efforts focus on addressing the challenges of data heterogeneity, model interpretability, and regulatory compliance, paving the way for seamless integration of deep learning solutions into routine clinical practice. As the field continues to evolve, collaborations between clinicians, data scientists, and industry stakeholders will be paramount in harnessing the full potential of deep learning for advancing medical image analysis and diagnosis. Furthermore, the integration of deep learning algorithms with other technologies, including natural language processing and computer vision, may foster multimodal medical data analysis and clinical decision support systems to improve patient care. The future of deep learning in medical image analysis and diagnosis is promising. With each success and advancement, this technology is getting closer to being leveraged for medical purposes. Beyond medical image analysis, patient care pathways like multimodal imaging, imaging genomics, and intelligent operating rooms or intensive care units can benefit from deep learning models.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Medical image analysis based on deep learning approach
    Puttagunta, Muralikrishna
    Ravi, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) : 24365 - 24398
  • [42] Explainable Deep Learning in Spectral and Medical Image Analysis
    Liu, Xuyang
    Duan, Chaoshu
    Cai, Wensheng
    Shao, Xueguang
    PROGRESS IN CHEMISTRY, 2022, 34 (12) : 2561 - 2572
  • [43] Advances in Deep Learning Techniques for Medical Image Analysis
    Niyaz, Usma
    Sambyal, Abhishek Singh
    Devanand
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 271 - 277
  • [44] Explainable Deep Learning Models in Medical Image Analysis
    Singh, Amitojdeep
    Sengupta, Sourya
    Lakshminarayanan, Vasudevan
    JOURNAL OF IMAGING, 2020, 6 (06)
  • [45] Deep Learning and Big DataTechnologies in Medical Image Analysis
    Rastogi, Priyanka
    Singh, Vijendra
    Yadav, Monika
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 60 - 63
  • [46] Bayesian Deep Active Learning for Medical Image Analysis
    Ghoshal, Biraja
    Swift, Stephen
    Tucker, Allan
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2021), 2021, : 36 - 42
  • [47] An Analysis Of Deep Learning In CXR Medical Image Processing
    Shafi, Syed Mohammed
    Kumar, Sathiya
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 701 - 709
  • [48] Shallow and deep learning classifiers in medical image analysis
    Prinzi, Francesco
    Currieri, Tiziana
    Gaglio, Salvatore
    Vitabile, Salvatore
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [49] Medical Image Analysis using Deep Relational Learning
    Liu, Zhihua
    arXiv, 2023,
  • [50] Gait Image Classification Using Deep Learning Models for Medical Diagnosis
    Vasudevan, Pavitra
    Mattins, R. Faerie
    Srivarshan, S.
    Narayanan, Ashvath
    Wadhwani, Gayatri
    Parvathi, R.
    Maheswari, R.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 6039 - 6063