Rice Yield and Nitrogen Use Efficiency: Different Responses to Soil Organic Matter between Early and Late Rice

被引:1
|
作者
Wang, Yong [1 ]
Tang, Gang [1 ]
Fu, Wentao [1 ]
Chen, Jin [2 ,3 ]
Huang, Shan [1 ]
Sun, Yanni [1 ]
机构
[1] Jiangxi Agr Univ, Minist Educ, Key Lab Crop Physiol Ecol & Genet Breeding, Nanchang 330045, Peoples R China
[2] Jiangxi Acad Agr Sci, Jinggangshan Inst Red Soil, Jinggangshan Branch, Jian 343016, Peoples R China
[3] Jiangxi Acad Agr Sci, Soil & Fertilizer & Resources & Environm Inst, Nanchang 330200, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil Organic Carbon; Double rice; N Uptake; N Recovery Efficiency; N-15; Tracer; GRAIN-YIELD;
D O I
10.1007/s42729-024-01896-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Purpose: Soil organic matter (SOM) is essential for crop production and serves as a critical indicator for soil fertility. A large deal of research has shown a large increase in the SOM content of rice fields in southern China. However, the responses of rice yield and fertilizer nitrogen (N) fate to the increased SOM remain unclear. The objective of the present study is to investigate the responses of rice yield and N use efficiency to SOM in a double-cropped rice system in subtropical China. Methods: A 2-year field experiment was conducted on three paddy fields with low, medium, and high SOM content (corresponding to a SOM concentration of 20.3, 28.5, and 37.7 g kg(- 1), respectively) to examine the responses of rice yield and N uptake to SOM. Meanwhile, N-15-labelled micro-plot experiments were carried out to clarify fertilizer N recovery efficiency, N residual in soil, and N losses to environment as affected by SOM. Results: Overall, our results showed that compared to low SOM, medium and high SOM increased rice yield by 5.4% and 19.9%, respectively. Compared to low SOM, medium and high SOM increased N-15 residues in soil by 51.6% and 90.7%, and reduced N-15 losses to the environment by 23.6% and 40.0%, respectively. We found a stronger response of grain yield and N-15 recovery efficiency to SOM for late rice than for early rice. Compared to low SOM, medium and high SOM enhanced early rice yield by 5.0% and 17.2%, whereas the increase was 5.9% and 22.2% for late rice yield, respectively. Relative to low SOM, medium and high SOM increased the N-15 recovery efficiency of late rice by 14.5% and 28.6%, respectively, but did not affect that of early rice. Conclusions: The present results demonstrate that increasing SOM can not only enhance rice yield but also improve fertilizer N retention and reduce fertilizer N losses in the double-cropped rice field. Furthermore, we suggest that fertilizer N management should take into account the different response of early and late rice to SOM.
引用
收藏
页码:5120 / 5129
页数:10
相关论文
共 50 条
  • [21] Effects of different organic residues on rice yield and soil quality
    Li Peng
    Wei Liu
    Chunjiang Su
    Ping Li
    Yan Fang
    Xiaolan Wang
    Lian Sun
    Journal of Mountain Science, 2012, 9 : 715 - 722
  • [22] Effects of different organic residues on rice yield and soil quality
    Peng Li
    Liu Wei
    Su Chunjiang
    Li Ping
    Fang Yan
    Wang Xiaolan
    Sun Lian
    JOURNAL OF MOUNTAIN SCIENCE, 2012, 9 (05) : 715 - 722
  • [23] Impact of controlled-release urea on rice yield, nitrogen use efficiency and soil fertility in a single rice cropping system
    Zhaoming Chen
    Qiang Wang
    Junwei Ma
    Ping Zou
    Lina Jiang
    Scientific Reports, 10
  • [24] Impact of controlled-release urea on rice yield, nitrogen use efficiency and soil fertility in a single rice cropping system
    Chen, Zhaoming
    Wang, Qiang
    Ma, Junwei
    Zou, Ping
    Jiang, Lina
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [25] Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping
    Schmidt-Rohr, K
    Mao, JD
    Olk, DC
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) : 6351 - 6354
  • [26] Yield and nitrogen use efficiency of lowland rice genotypes as influenced by nitrogen fertilization
    Fageria, Nand Kumar
    dos Santos, Alberto Baeta
    Cutrim, Veridiano dos Anjos
    PESQUISA AGROPECUARIA BRASILEIRA, 2007, 42 (07) : 1029 - 1034
  • [27] Effects of zeolite application on rice yield, nitrogen recovery, and nitrogen use efficiency
    Kavoosi, M.
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2007, 38 (1-2) : 69 - 76
  • [28] Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation
    Yan, Jun
    Wu, Qixia
    Qi, Dongliang
    Zhu, Jianqiang
    AGRICULTURAL WATER MANAGEMENT, 2022, 263
  • [29] Combining organic and inorganic fertilization increases rice yield and soil nitrogen and carbon: dissolved organic matter chemodiversity and soil microbial communities
    Xu, Yanggui
    Peng, Zhiping
    Tu, Yuting
    Huang, Jichuan
    PLANT AND SOIL, 2023, 492 (1-2) : 557 - 571
  • [30] Combining organic and inorganic fertilization increases rice yield and soil nitrogen and carbon: dissolved organic matter chemodiversity and soil microbial communities
    Yanggui Xu
    Zhiping Peng
    Yuting Tu
    Jichuan Huang
    Plant and Soil, 2023, 492 : 557 - 571