A semidualizing module is a generalization of Grothendieck's dualizing module. For a local Cohen-Macaulay ring R, the ring itself and its canonical module are always realized as (trivial) semidualizing modules. Reasonably, one might ponder the question; when do nontrivial examples exist? In this paper, we study this question in the realm of numerical semigroup rings and, up to multiplicity 9, completely classify which of these rings possess a nontrivial semidualizing module. Using this classification, for each integer n > 8, we construct a numerical semigroup ring of multiplicity n which admits a nontrivial semidualizing module.
机构:
Clemson Univ, Sch Math & Stat Sci, O-110 Martin Hall,Box 340975, Clemson, SC 29634 USAClemson Univ, Sch Math & Stat Sci, O-110 Martin Hall,Box 340975, Clemson, SC 29634 USA
Sather-Wagstaff, Sean K.
Se, Tony
论文数: 0引用数: 0
h-index: 0
机构:
West Virginia Univ, Dept Math, 320 Armstrong Hall,POB 6310, Morgantown, WV 26506 USAClemson Univ, Sch Math & Stat Sci, O-110 Martin Hall,Box 340975, Clemson, SC 29634 USA
Se, Tony
Spiroff, Sandra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mississippi, Dept Math, Hume Hall 335,POB 1848, University, MS 38677 USAClemson Univ, Sch Math & Stat Sci, O-110 Martin Hall,Box 340975, Clemson, SC 29634 USA