Transparent electromagnetic interference shielding materials using MXene

被引:9
|
作者
Deng, Yanli [1 ]
Chen, Yaqing [2 ,3 ]
Liu, Wei [4 ]
Wu, Lili [1 ]
Wang, Zhou [1 ]
Xiao, Dan [5 ]
Meng, Decheng [5 ]
Jiang, Xingguo [5 ]
Liu, Jiurong [1 ]
Zeng, Zhihui [1 ]
Wu, Na [6 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[3] Adv Biomed Instrumentat Ctr, Hong Kong, Peoples R China
[4] Shandong Univ, Inst Crystal Mat, State Key Lab Crystal Mat, Jinan, Shandong, Peoples R China
[5] Xiaomi Commun Co Ltd, Beijing, Peoples R China
[6] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
electromagnetic waves; transition metal carbides/nitrides; transparent electromagnetic shielding materials; COMPOSITE FILMS; CARBON NANOTUBE; POLYMER COMPOSITES; GRAPHENE OXIDE; METALLIC MESH; PERFORMANCE; EFFICIENT; NANOCOMPOSITE; CONDUCTIVITY; ABSORPTION;
D O I
10.1002/cey2.593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes. This work reviews the recent research on developing highly efficient and optical transparent electromagnetic interference (EMI) shields in a comprehensive way. Materials from transition metal carbide/nitrides (MXenes), indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes. image
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Ceramic building materials for electromagnetic interference shielding using metallurgical slags
    Bantsis, G.
    Sikalidis, C.
    Betsiou, M.
    Yioultsis, T.
    Bourliva, A.
    ADVANCES IN APPLIED CERAMICS, 2011, 110 (04) : 233 - 237
  • [22] Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding, Film
    Jia, Li-Chuan
    Yan, Ding-Xiang
    Liu, Xiaofeng
    Ma, Rujun
    Wu, Hong-Yuan
    Li, Zhong-Ming
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (14) : 11941 - 11949
  • [23] Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding
    Ma, Chang
    Cao, Wen-Tao
    Zhang, Wei
    Ma, Ming-Guo
    Sun, Wen-Ming
    Zhang, Juan
    Chen, Feng
    CHEMICAL ENGINEERING JOURNAL, 2021, 403
  • [24] Electromagnetic Interference Shielding by Transparent Graphene/ Nickel Mesh Films
    Van Viet Tran
    Duc Dung Nguyen
    Nguyen, An T.
    Hofmann, Mario
    Hsieh, Ya-Ping
    Kan, Hung-Chih
    Hsu, Chia-Chen
    ACS APPLIED NANO MATERIALS, 2020, 3 (08): : 7474 - 7481
  • [25] Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for high-performance electromagnetic interference shielding
    Jin, Meng
    Chen, Wei
    Liu, Liu-Xin
    Zhang, Hao-Bin
    Ye, Lvxuan
    Min, Peng
    Yu, Zhong-Zhen
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (27) : 14364 - 14373
  • [26] Highly optically transparent graphene mesh for electromagnetic interference shielding
    Shi, Kai
    Su, Junhong
    Liang, Haifeng
    Hu, Kai
    Xu, Junqi
    DIAMOND AND RELATED MATERIALS, 2022, 123
  • [27] Transparent and Flexible Electromagnetic Interference Shielding Film Using ITO Nanobranches by Internal Scattering
    Kim, Youngho
    Hyeong, Seok-Ki
    Choi, Yeunji
    Lee, Seoung-Ki
    Lee, Jae-Hyun
    Yu, Hak Ki
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (51) : 61413 - 61421
  • [28] Multilayered MXene-PEDOT:PSS Composite for Electromagnetic Interference Shielding
    Roy, Sanjoy Sur
    Meyyappan, M.
    Giri, P.K.
    IEEE Journal on Flexible Electronics, 2024, 3 (06): : 282 - 288
  • [29] From MXene Trash to Ultraflexible Composites for Multifunctional Electromagnetic Interference Shielding
    Liu, Yue
    Wu, Na
    Zheng, Sinan
    Yang, Yunfei
    Li, Bin
    Liu, Wei
    Liu, Jiurong
    Zeng, Zhihui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (44) : 50120 - 50128
  • [30] MXene/CNTs/Aramid Aerogels for Electromagnetic Interference Shielding and Joule Heating
    Yan, Zhen
    Ding, Yulin
    Huang, Meirong
    Li, Junfeng
    Han, Qinxue
    Yang, Meiqi
    Li, Wenmu
    ACS APPLIED NANO MATERIALS, 2023, 6 (07) : 6141 - 6150