MACHINE LEARNING-BASED CYTOLOGICAL ANALYSIS OF CEREBROSPINAL FLUID IN MEDULLOBLASTOMA

被引:0
|
作者
Maack, Lennart [1 ]
Kresbach, Catena [2 ]
Neumann, Julia [2 ]
Tischendorf, Jacqueline [2 ,3 ]
Wefers, Annika [2 ]
Seegerer, Philipp [4 ]
Schueller, Ulrich [2 ,3 ]
Schlaefer, Alexander [1 ]
Bockmayr, Michael [2 ,3 ]
机构
[1] Hamburg Univ Technol, Hamburg, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Hamburg, Germany
[3] Childrens Canc Ctr Hamburg, Res Inst, Hamburg, Germany
[4] Aignostics GmbH, Berlin, Germany
关键词
D O I
10.1093/neuonc/noae064.708
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PATH-05
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Machine Learning-Based Qualitative Identification of Four-Phase Fluid in Reservoir
    Wang, Ruifeng
    Wu, Wensheng
    ACS OMEGA, 2023, 9 (01): : 1656 - 1669
  • [32] Cerebrospinal fluid evaluation in adult patients with medulloblastoma
    von Bueren, Andre
    Hugel, Chistian
    Rutkowski, Stefan
    LANCET ONCOLOGY, 2020, 21 (03): : E120 - E120
  • [33] Deep Learning-Based Classification of Cancer Cell in Leptomeningeal Metastasis on Cytomorphologic Features of Cerebrospinal Fluid
    Yu, Wenjin
    Liu, Yangyang
    Zhao, Yunsong
    Huang, Haofan
    Liu, Jiahao
    Yao, Xiaofeng
    Li, Jingwen
    Xie, Zhen
    Jiang, Luyue
    Wu, Heping
    Cao, Xinhao
    Zhou, Jiaming
    Guo, Yuting
    Li, Gaoyang
    Ren, Matthew Xinhu
    Quan, Yi
    Mu, Tingmin
    Izquierdo, Guillermo Ayuso
    Zhang, Guoxun
    Zhao, Runze
    Zhao, Di
    Yan, Jiangyun
    Zhang, Haijun
    Lv, Junchao
    Yao, Qian
    Duan, Yan
    Zhou, Huimin
    Liu, Tingting
    He, Ying
    Bian, Ting
    Dai, Wen
    Huai, Jiahui
    Wang, Xiyuan
    He, Qian
    Gao, Yi
    Ren, Wei
    Niu, Gang
    Zhao, Gang
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [34] Machine Learning-Based Sentiment Analysis Towards Indian Ministry
    Bhargavi, K.
    Mashankar, Pratish
    Sreevarsh, Pamidimukkala Vasista
    Bilolikar, Radhika
    Ranganathan, Preethi
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 381 - 391
  • [35] Machine Learning-Based Diffractive Image Analysis with Subwavelength Resolution
    Ghosh, Abantika
    Roth, Diane J.
    Nicholls, Luke H.
    Wardley, William P.
    Zayats, Anatoly, V
    Podolskiy, Viktor A.
    ACS PHOTONICS, 2021, 8 (05) : 1448 - 1456
  • [36] Image analysis and machine learning-based malaria assessment system
    Manning, Kyle
    Zhai, Xiaojun
    Yu, Wangyang
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (02) : 132 - 142
  • [37] Understanding EMS response times: a machine learning-based analysis
    Hill, Peter
    Lederman, Jakob
    Jonsson, Daniel
    Bolin, Peter
    Vicente, Veronica
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [38] Machine learning-based composition analysis of ancient glass objects
    Li, Ying
    Tang, Jierong
    Rao, Junreng
    Wang, Yuhan
    Li, Le
    Tan, Zhen
    Xiao, Weidong
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN ELECTRONICS ENGINEERING, AIEE 2024, 2024, : 9 - 19
  • [39] A Machine Learning-Based Voice Analysis for the Detection of Dysphagia Biomarkers
    Cesarini, Valerio
    Casiddu, Niccolo
    Porfirione, Claudia
    Massazza, Giulia
    Saggio, Giovanni
    Costantini, Giovanni
    2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (IEEE METROIND4.0 & IOT), 2021, : 407 - 411
  • [40] WorMachine: machine learning-based phenotypic analysis tool for worms
    Hakim, Adam
    Mor, Yael
    Toker, Itai Antoine
    Levine, Amir
    Neuhof, Moran
    Markovitz, Yishai
    Rechavi, Oded
    BMC BIOLOGY, 2018, 16