An extended nonconforming finite element method for the coupled Darcy-Stokes problem

被引:0
|
作者
Cao, Pei [1 ,2 ]
Chen, Jinru [2 ,3 ]
机构
[1] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R China
[3] Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金;
关键词
The coupled Darcy-Stokes problem; Extended nonconforming finite element; Inf-sup condition; Optimal convergence; Curved interface; CROUZEIX-RAVIART ELEMENT; POROUS-MEDIA; FLUID-FLOW; MODEL; DISCRETIZATION;
D O I
10.1016/j.cam.2024.116092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An extended nonconforming finite element method for solving the coupled Darcy-Stokes problem with straight or curved interfaces is proposed and analyzed. The approach applies the same Crouzeix-Raviart discretization in both regions. By introducing some stabilization terms, the discrete inf-sup condition and optimal a priori estimate are derived. In the end, some numerical experiments are presented to demonstrate the theoretical results.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A weak Galerkin finite element method for a coupled Stokes-Darcy problem on general meshes
    Li, Rui
    Gao, Yali
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 334 : 111 - 127
  • [32] Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes–Darcy Problem
    Rui Li
    Yali Gao
    Jian Li
    Zhangxin Chen
    Journal of Scientific Computing, 2018, 74 : 693 - 727
  • [33] Residual-based a posteriori error estimates for a nonconforming finite element discretization of the Stokes–Darcy coupled problem: isotropic discretization
    Nicaise S.
    Ahounou B.
    Houedanou W.
    Afrika Matematika, 2016, 27 (3-4) : 701 - 729
  • [34] Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems
    Rivière, B
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) : 479 - 500
  • [35] Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems
    Béatrice Riviére
    Journal of Scientific Computing, 2005, 22-23 : 479 - 500
  • [36] A Nonconforming Nitsche's Extended Finite Element Method for Stokes Interface Problems
    Wang, Nan
    Chen, Jinru
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 342 - 374
  • [37] Topology optimization of creeping fluid flows using a Darcy-Stokes finite element
    Guest, JK
    Prévost, JH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (03) : 461 - 484
  • [38] A Nonconforming Nitsche’s Extended Finite Element Method for Stokes Interface Problems
    Nan Wang
    Jinru Chen
    Journal of Scientific Computing, 2019, 81 : 342 - 374
  • [39] H(div) conforming finite element methods for the coupled Stokes and Darcy problem
    Chen, Yumei
    Huang, Feiteng
    Xie, Xiaoping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) : 4337 - 4349
  • [40] A new finite-element discretization of the Stokes problem coupled with the Darcy equations
    Bernardi, Christine
    Hecht, Frederic
    Nouri, Fatma Zohra
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (01) : 61 - 93