Remaining useful life prediction method of rolling bearings based on improved 3σ and DBO-HKELM

被引:1
|
作者
Gao, Shuzhi [1 ]
Li, Zeqin [1 ,2 ]
Zhang, Yimin [1 ]
Zhang, Sixuan [1 ,3 ]
Zhou, Jin [1 ,3 ]
机构
[1] Shenyang Univ Chem Technol, Equipment Reliabil Inst, Shenyang 110142, Peoples R China
[2] Shenyang Univ Chem Technol, Coll Mech & Power Engn, Shenyang 110142, Peoples R China
[3] Shenyang Univ Chem Technol, Coll Informat Engn, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
rolling bearing; remaining useful life; improved kernel principal component analysis; improved; 3; sigma; dung beetle optimization algorithm; hybrid kernel extreme learning machine;
D O I
10.1088/1361-6501/ad52b5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An improved 3 sigma method and dung beetle algorithm optimization hybrid kernel extreme learning machine-based (DBO-HKELM) approach for predicting the remaining useful life (RUL) of rolling bearings was suggested in order to increase prediction accuracy. Firstly, multi-dimensional degradation feature data is extracted from bearing vibration data. Considering the influence of noise signal on the prediction accuracy, an improved kernel principal component analysis method is proposed to reduce the noise of degraded features. Then, an improved 3 sigma method is proposed to determine the starting point of bearing degradation by combining bearing vibration signal data. Lastly, a DBO-HKELM life prediction model was put forth. The parameters of hybrid kernel extreme learning machine were optimized by dung beetle algorithm, and appropriate kernel parameters and regularization coefficient were selected. The feature set of degradation indicators is input into the trained model to output the bearing RUL prediction results starting from the determined degradation starting point. Multiple data sets were used to verify that the new RUL prediction method significantly improves the prediction accuracy.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM
    Sun, Bo
    Hu, Wenting
    Wang, Hao
    Wang, Lei
    Deng, Chengyang
    SENSORS, 2025, 25 (02)
  • [22] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Jingna Liu
    Rujiang Hao
    Qiang Liu
    Wenwu Guo
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1567 - 1578
  • [23] Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE-MACNN
    Wang, Yaping
    Wang, Jinbao
    Zhang, Sheng
    Xu, Di
    Ge, Jianghua
    ENTROPY, 2022, 24 (07)
  • [24] Remaining Useful Life Prediction of Rolling Element Bearings Based on Unscented Kalman Filter
    Qi, Junyu
    Mauricio, Alexadre
    Sarrazin, Mathieu
    Janssens, Karl
    Gryllias, Konstantinos
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO 2018), 2019, 15 : 111 - 121
  • [25] Remaining Useful Life Prediction of Rolling Bearings Based on Policy Gradient Informer Model
    Xiong, Jiahao
    Li, Feng
    Tang, Baoping
    Wang, Yongchao
    Luo, Ling
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2024, 56 (04): : 273 - 286
  • [26] Remaining useful life prediction of rolling bearings based on TET and DSRNet-AttBiLSTM
    Zhou, Yuguo
    Zhang, Jinchao
    Sun, Yiping
    Yu, Chunfeng
    Zhou, Lijian
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (19): : 163 - 173
  • [27] Remaining useful life prediction of rolling bearings based on convolutional recurrent attention network
    Zhang, Qiang
    Ye, Zijian
    Shao, Siyu
    Niu, Tianlin
    Zhao, Yuwei
    ASSEMBLY AUTOMATION, 2022, 42 (03) : 372 - 387
  • [28] Remaining useful life prediction of rolling element bearings based on health state assessment
    Liu, Zhiliang
    Zuo, Ming J.
    Qin, Yong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2016, 230 (02) : 314 - 330
  • [29] Health index construction and remaining useful life prediction of rolling bearings
    Wang Yujing
    Wang Shida
    Kang Shouqiang
    Xie Jinbao
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1241 - 1247
  • [30] Remaining useful life prediction for rolling bearings based on RVM-Hausdorff distance
    Xu, Peihua
    Tu, Zhaoyu
    Li, Menghui
    Wang, Jun
    Wang, Xian-Bo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)