Improved Global U-Net applied for multi-modal brain tumor fuzzy segmentation

被引:0
|
作者
Mishra, Annu [1 ]
Gupta, Pankaj [2 ]
Tewari, Peeyush [3 ]
机构
[1] Birla Inst Technol Mesra, Dept Comp Sci & Engn, Noida, Uttar Pradesh, India
[2] Birla Inst Technol Mesra, Dept Comp Sci & Engn, Ranchi, Jharkhand, India
[3] Birla Inst Technol Mesra, Dept Math, Jaipur, Rajasthan, India
关键词
U-Net; Multi-modality; Fuzzy image segmentation; Pooling layer; Aggregation block; DEEP; OBJECT; MODEL;
D O I
10.47974/JIM-1767
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extended our work from Global U-Net combined with fuzzy amalgamation of Inception Model and Improved Kernel Variation for MRI Brain Image Segmentation [1] which was meant for single modality MRI images only to a brain tumor fuzzy segmentation. Many CNNs gives state of art results for a particular type of images. However, they cannot achieve the same result for the images captured from different imaging techniques. We experimented the Global U-Net model for MRI images earlier and this time we intended to make it applicable for other type of images too using the concept of fuzzy segmentation. The major concern was to overcome the limitations of single modality system that is not all the kernels of U-Net are capable of generating clear feature vectors for different image modalities. The result generated was satisfactory and we would further extend it for colored images.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
  • [41] A Rectal CT Tumor Segmentation Method Based on Improved U-Net
    Dong, Haowei
    Zhang, Haifei
    Wu, Fang
    Qiu, Jianlin
    Zhang, Jian
    Wang, Haoyu
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (04)
  • [42] Multi-scale Masked 3-D U-Net for Brain Tumor Segmentation
    Xu, Yanwu
    Gong, Mingming
    Fu, Huan
    Tao, Dacheng
    Zhang, Kun
    Batmanghelich, Kayhan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 222 - 233
  • [43] A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net
    Li, Zhenwei
    Wu, Xiaoqin
    Yang, Xiaoli
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [44] Brain Tumor Segmentation Using U-Net and Edge Contour Enhancement
    Ho, Te-Wei
    Qi, Huan
    Lai, Feipei
    Xiao, Fu-Ren
    Wu, Jin-Ming
    2019 3RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (ICDSP 2019), 2019, : 75 - 79
  • [45] Adaptive cascaded transformer U-Net for MRI brain tumor segmentation
    Chen, Bonian
    Sun, Qiule
    Han, Yutong
    Liu, Bin
    Zhang, Jianxin
    Zhang, Qiang
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):
  • [46] Analysis of depth variation of U-NET architecture for brain tumor segmentation
    Jena, Biswajit
    Jain, Sarthak
    Nayak, Gopal Krishna
    Saxena, Sanjay
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 10723 - 10743
  • [47] Double attention U-Net for brain tumor MR image segmentation
    Li, Na
    Ren, Kai
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2021, 14 (03) : 467 - 479
  • [48] Brain Tumor Segmentation for Multi-Modal MRI with Missing Information
    Xue Feng
    Kanchan Ghimire
    Daniel D. Kim
    Rajat S. Chandra
    Helen Zhang
    Jian Peng
    Binghong Han
    Gaofeng Huang
    Quan Chen
    Sohil Patel
    Chetan Bettagowda
    Haris I. Sair
    Craig Jones
    Zhicheng Jiao
    Li Yang
    Harrison Bai
    Journal of Digital Imaging, 2023, 36 (5) : 2075 - 2087
  • [49] Brain Tumor Segmentation for Multi-Modal MRI with Missing Information
    Feng, Xue
    Ghimire, Kanchan
    Kim, Daniel D.
    Chandra, Rajat S.
    Zhang, Helen
    Peng, Jian
    Han, Binghong
    Huang, Gaofeng
    Chen, Quan
    Patel, Sohil
    Bettagowda, Chetan
    Sair, Haris I.
    Jones, Craig
    Jiao, Zhicheng
    Yang, Li
    Bai, Harrison
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (05) : 2075 - 2087
  • [50] Flexible Fusion Network for Multi-Modal Brain Tumor Segmentation
    Yang, Hengyi
    Zhou, Tao
    Zhou, Yi
    Zhang, Yizhe
    Fu, Huazhu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3349 - 3359