Imbalanced deep transfer network for fault diagnosis of high-speed train traction motor bearings

被引:4
|
作者
Liu, Yilong [1 ,2 ]
Li, Xinyuan [1 ,2 ]
Zhang, Xingwu [1 ,2 ]
Fan, Lutong [1 ,2 ]
Chen, Xuefeng [1 ,2 ]
Gong, Baogui [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Natl & Local Joint Engn Res Ctr Equipment Operat S, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Traction motor bearing; Fault diagnosis; Feature shift; Label shift; Imbalanced unsupervised domain adaptation; DISTRIBUTIONS;
D O I
10.1016/j.knosys.2024.111682
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transfer learning-based fault diagnosis methods have been increasingly utilized for major equipment, including high-speed trains, turbine machines, and aircraft engines. However, most traditional transfer methods based on implicitly balanced data only consider feature shift. When applied to high-speed train traction motor bearing fault diagnosis, the cross-domain generalization ability of these transfer methods is weakened by label shift. Due to the complex operating conditions of high-speed trains, these transfer methods often fail under multiple operating conditions, resulting in reduced cross-domain diagnostic accuracy when faced with feature shift and label shift simultaneously. Therefore, we propose the imbalanced deep transfer network (IDTN) to tackle the aforementioned problem in cross-domain fault diagnosis of high-speed train traction motor bearings. Firstly, IDTN overcomes the influence of imbalanced distributions in source domain samples through deep imbalanced learning. Then, batch nuclear-norm maximization is introduced to enhance the prediction discriminability and diversity of the target domain samples. Finally, case studies of the high-speed train traction motor bearing fault dataset and the Case Western Reserve University bearing fault dataset are conducted. Experimental results prove the effectiveness and superiority of IDTN in the cross-domain fault diagnosis field with both feature shift and label shift.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Fault diagnosis of high-speed train bogie based on LSTM neural network
    Deqing Huang
    Yuanzhe Fu
    Na Qin
    Shibin Gao
    Science China Information Sciences, 2021, 64
  • [22] Fault diagnosis of high-speed train bogie based on LSTM neural network
    Deqing HUANG
    Yuanzhe FU
    Na QIN
    Shibin GAO
    ScienceChina(InformationSciences), 2021, 64 (01) : 260 - 262
  • [23] Fault diagnosis of high-speed train bogie based on LSTM neural network
    Huang, Deqing
    Fu, Yuanzhe
    Qin, Na
    Gao, Shibin
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (01)
  • [24] Gearbox fault diagnosis of high-speed railway train
    Zhang, Bing
    Tan, Andy C. C.
    Lin, Jian-hui
    ENGINEERING FAILURE ANALYSIS, 2016, 66 : 407 - 420
  • [25] A Fuzzy Hi / H∞ Optimization Approach to Fault Detection of High-Speed Train Traction Motor Systems
    Xu, Jiahong
    Zhong, Maiying
    Li, Linlin
    Wu, Yunkai
    Song, Baoye
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,
  • [26] Sensor Fault Diagnosis for High-Speed Traction Converter System Based on Bayesian Network
    Chen, Zhiwen
    Chen, Wenying
    Tao, Hongwei
    Peng, Tao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4969 - 4974
  • [27] Fault Diagnosis Method for Bearing of High-Speed Train Based on Multitask Deep Learning
    Gu, Jia
    Huang, Ming
    SHOCK AND VIBRATION, 2020, 2020
  • [28] Sequential-Fault Diagnosis Strategy for High-Speed Train Traction Systems Based on Unreliable Tests
    Li, Mengwei
    Zhou, Ying
    Jia, Limin
    Qin, Yong
    Wang, Zhipeng
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [29] Research on Fault Diagnosis Method for Speed Sensor of High-Speed Train
    Lu, Jinjun
    Wu, Mengling
    Liu, Gang
    Lu, Jinjun
    Geng, Xiaofeng
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [30] Ensefgram: An optimal demodulation band selection method for the early fault diagnosis of high-speed train bearings
    Wang, Cuiping
    Qi, Hongyuan
    Hou, Dongming
    Han, Defu
    Yang, Jiangtian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 213